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EXECUTIVE SUMMARY

The goal of this work is to introduce meaningful security metrics that motivate e�ective
improvements in network security. We present a methodology for directly deriving security metrics
from realistic mathematical models of adversarial behaviors and systems and also a maturity model
to guide the adoption and use of these metrics. Four security metrics are described that assess
the risk from prevalent network threats. These can be computed automatically and continuously
on a network to assess the e�ectiveness of controls. Each new metric directly assesses the e�ect
of controls that mitigate vulnerabilities, continuously estimates the risk from one adversary, and
provides direct insight into what changes must be made to improve security. Details of an explicit
maturity model are provided for each metric that guide security practitioners through three stages
where they (1) Develop foundational understanding, tools and procedures, (2) Make accurate and
timely measurements that cover all relevant network components and specify security conditions to
test, and (3) Perform continuous risk assessments and network improvements. Metrics are designed
to address speci�c threats, maintain practicality and simplicity, and motivate risk reduction. These
initial four metrics and additional ones we are developing should be added incrementally to a
network to gradually improve overall security as scores drop to acceptable levels and the risks from
associated cyber threats are mitigated.
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1. INTRODUCTION

Government, commercial, and institutional computer networks are under constant cyber at-
tack. Recently, high-pro�le successful attacks have been detected against the International Mon-
etary Fund, Citibank, Lockheed Martin, Google, RSA Security, Sony, and Oak Ridge National
Laboratory[13]. These and other attacks have heightened securing networks as a high priority for
many organizations, including the U.S. Government. One of the most important strategies to pro-
tect networks is to know what types of attacks adversaries employ, to develop metrics to assess
susceptibility to each attack type, and then to use metrics to guide addition of controls that are
most e�ective in preventing attacks. Since we are engaged in an arms race with attackers, this
strategy can only be e�ective if defender actions evolve more rapidly than those of the attacker. As
such, metrics that accurately assess risk from current attacks must be rapidly developed and de-
ployed. To be e�cient and e�ective, metrics must (1) focus on the most common damaging attacks
occurring today and anticipated in the near future, (2) be automated when possible and continu-
ously evaluated, and (3) motivate and quantify security improvements. Driven by these concerns,
this report presents a methodology that enables rapid metric development for new threats. This
methodology consists of estimating risk by creating an accurate probabilistic model of threats and
defenders informed by continuous real-time measurements of important network security conditions.
It is illustrated by presenting new metrics for four of the most prevalent modern attack types. These
metrics can be computed automatically and continuously, and they estimate the potential damage
expressed as the expected number of hosts that can be directly compromised from each attack type.

All metrics assess risk for one attack type over a speci�c measurement interval. Risk represents
the expected number of hosts or infrastructure devices directly compromised by an attacker that
provide an initial foothold into a network. If asset values are available, risk can represent the total
asset value of the compromised devices. The term �host� or �device� will refer to any network-
connected device with an IP address including infrastructure devices such as routers, switches, and
�rewalls and also user devices such as desktops, laptops, netbooks, smart phones, PDA's, music
players and other devices. We will assume that attackers have the intent and capability to use
speci�c attack types and will initially characterize attackers by the rate at which they scan network
devices searching for exploitable security properties. We will use the term �compromise� to refer to
a victim failing to perform its function including loss of con�dentiality, integrity, or availability.

The remainder of this report reviews past related metric research, describes goals and a met-
ric maturity model used to facilitate metric development and installation, presents desired metric
characteristics, reviews common analyses and terminology used across all metrics, analyzes our ad-
versary models, reviews and provides details of four metrics, reviews limitations, and ends with a
discussion.

1



 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 



2. LIMITATIONS OF PAST METRICS USED TO ASSESS RISK

Risk analysis is a methodology that requires the following three main steps (e.g., [1]):

1. De�ne and characterize the threat by specifying capabilities, goals, and possible outcomes
resulting from the threat attempting to reach di�erent goals.

2. Characterize the system being protected including vulnerabilities and defenses that are
relevant to the speci�c threat.

3. Analyze the risk using statistical approaches to determine probabilities and the damage for
di�erent outcomes and the e�ect of relevant defenses.

In this section we review past approaches that have been developed to create risk metrics
for large enterprise networks and also individual software applications. We �nd that some metrics
that claim to measure risk omit one or more of these steps such as de�ning the threat. Others are
labor intensive or require human judgment and thus can not be automated. Because our goal is to
develop systems that provide real-time continuous risk assessment, we end this review by focusing
on more recent data-driven approaches that motivate some of our work.

One of the most common past approaches to assess risk is to employ a group of security
experts, often called a �red team,� who demonstrate that they can compromise the con�dentiality,
integrity, or availability of a network or application (e.g., [20]). Although the work factor required by
a red team measured in person days or cost may be a useful metric, red teams are used infrequently
because they are expensive, not repeatable, and have di�cult-to-calibrate skill levels. They also
may not comprehensively explore all important threat types.

A second approach is to subjectively measure risk by using subject matter experts who sepa-
rately assess the potential impact and ease of exploitation for di�erent threats. The overall risk is
found by either multiplying the impact times the ease-of-exploit (often incorrectly called likelihood)
or using a �risk matrix� that provides the risk for all combinations of impact and ease-of-exploit.
This is the approach recommended by NIST [44], by the early security consulting �rm @stake [17],
and by many modern risk assessment approaches [15, 17]. The Mission Oriented Risk and Design
Analysis (MORDA) methodology is another important example of a subjective approach that relies
on subject matter experts to suggest attacks and defenses for a system being designed [4]. It com-
bines adversary preference scores for various attacks, scores rating the e�ectiveness of a system with
various countermeasures, and overall system cost together to assess the risk of alternative system
designs that employ di�erent countermeasures.

Two more recent subjective approaches have been created to assess the risk to software appli-
cations from a library of well-de�ned threats [11, 14]. The threat modeling approach of [11] begins
by creating an annotated data�ow diagram that shows external entities, processes, and data�ow
interactions. Each data�ow interaction is then compared to a library of 35 threats to determine
if any threats apply to that interaction. The threat library includes entries such as �Access using
default credentials,� �Network sni�ng,� and �SQL Injection.� After a user �lls in answers to 10
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questions concerning the impact and ease of creating and executing an exploit corresponding to a
threat, a risk score is created using a modi�ed version of the Common Vulnerability Scoring System
[23]. Risk scores are created for all relevant threats and interactions and sorted to address the most
serious threats �rst.

All the above subjective approaches share common weaknesses. First, they are often highly
subjective, labor intensive, and yield results that may vary dramatically across di�erent subject
matter experts. Results are often not comprehensive or explanatory and these approaches can not
be automated and used for continuous security monitoring.

More recently, the Security Content Automation Program (SCAP) [34] was developed by the
National Institute of Standards and Technology (NIST) and others to support data-driven risk
assessment. It supports the National Vulnerability Database (NVD) [28] that provides a repository
for known vulnerabilities and software that contains these vulnerabilities. The NVD is often used to
associate vulnerabilities with software. SCAP includes the Common Vulnerability Scoring System
(CVSS) [23]. This provides a score for each new software vulnerability discovered that prioritizes
the importance of this vulnerability. It is created based on a few questions answered by a subject
matter expert. Although the base CVSS score is not necessarily a risk, it is computed by adding
a score that represents the ease of exploiting a vulnerability to another score that represents the
impact of exploiting the vulnerability. CVSS scores and the common dictionary provided by the
Common Vulnerabilities and Exposures (CVE) list [22] have been used extensively in data-driven
risk assessment to both enumerate vulnerabilities and assess their importance.

SCAP components have enabled many modern data-driven risk assessment approaches for
enterprise networks. The overwhelming majority of these risk metrics are simply counts or percent-
ages that measure compliance to a policy or aspects of a network related to security. Representative
examples of recently recommended metrics of this type are the number of open ports reachable
from the Internet [3] and the number of missing patches, �rewall rule changes, and vulnerabilities
over a given interval [17]. Examples of counts provided by commercial tools include the number of
high-severity vulnerabilities found by network vulnerability scanners (e.g., [40]) and the numbers or
percentages of hosts that are are not patched to a desired level (e.g., [12]). A recent comprehensive
list of metrics for enterprise networks provided by the Center for Internet Security [5] is also dom-
inated by percentages based on counts. For example, three key metrics in the proposed scorecard
[5] are the percentage of systems with no known severe vulnerabilities, the percentage of systems
that are compliant with the current patch policy, and the percentage of systems that are compliant
with the current con�guration policy. Other metrics also assess the percentage of systems that are
covered or included in these metrics.

A more comprehensive example of how SCAP enables continuous security monitoring in real
time is the U.S. Department of State's iPost system [15]. Metrics are gathered using commercial
tools and include items such as the number of vulnerabilities on a host, the number of missing
software patches per host, the number of account password ages above a threshold, the number of
hosts not reporting to management tools, and the number of hosts not included in vulnerability
scans. These per-host measures are combined across sites and across the entire enterprise to compute
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Figure 1. The number of serious vulnerabilities on a network is not an accurate risk metric.

site and enterprise security summaries including a single score and a grade from �A� to �F.� Metrics
are designed to motivate security improvements by computing scores consistently and fairly and
by making scores visible to all. As this system was deployed and used, it was found that fairness
was important for acceptance. Fairness included not penalizing a system administrator for failing
to install a software upgrade that has not yet been approved or that is not approved because it
disables critical functionality. It also includes not assuming a security condition fails a test because
a test is not successfully completed, but waiting until a test has completed successfully and only
then using the PASS or FAIL result of the test.

Risk is not measured by either the iPost metrics or any of the other metrics described above
that claim to assess risk using counts or percentages. Although these counts and percentages
measure network properties that are related to risk, they do not assess risk. As noted above,
determining risk requires three major steps not provided by count and percentage metrics. In
particular, counts and percentages do not de�ne the threat, specify the probability of di�erent
outcomes, or indicate how probabilities change when defenses change. Without an explicit threat
model that provides an answer to the question �Secure against what?,� counts and percentages are
di�cult to interpret. For example, it is impossible to know whether speci�c threats are prevented,
to determine expected number of hosts that may be compromised for a speci�c threat type, or to
determine whether di�erent defensive strategies such as patching known vulnerabilities more rapidly
might reduce risk signi�cantly.

One of the di�culties in interpreting counts as a risk metric is illustrated in Figure 1. Con-
sider a situation where the metric used is the total number of software packages on a network with
severe vulnerabilities as indicated by a CVSS score of 10. As shown in Figure 1, this could rep-
resent a network where one host contains all the vulnerabilities as shown on the left or where the
vulnerabilities are spread across all hosts as shown on the right. If the threat model of concern
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Figure 2. The number of detected incidents in a network is not an accurate risk metric.

was a rapidly scanning worm on the inside of this network attacking all severe vulnerabilities, and
these vulnerabilities were all on web or database servers, risk could vary dramatically for these two
situations. The expected number of hosts compromised by a rapidly scanning worm with access
to the network could be one for the left network and 20 for the right network, even though they
have the same number of total vulnerabilities. A second major problem with this simple count is
that the importance or asset value of hosts in a network could di�er substantially. For example,
one host could be an administrative host that would enable compromise of all other hosts in the
network, another might be a database server containing highly con�dential material, and others
might be simple user workstations with web servers left on by default. As noted above, accurate
risk assessment must include the damage caused by the threat and this includes the host-speci�c
asset values obtained by the threat. Instead of the expected number of hosts compromised, a more
accurate risk metric would be the expected asset value compromised. This can be used whenever
asset values are available.

Figure 2 illustrates another problem with using counts as metric. In this �gure, we assume
there is a mechanism to detect the number of incidents or hosts that have been compromised by
an attacker in a network. Incidents could be detected by anti-virus tools, host-based �rewalls, or
known signatures in network tra�c detected by an intrusion detection system when malware signals
back to command and control hosts. Here we assume the number of incidents is the metric used to
assess risk. The far left panel in Figure 2 represents a network (network A) where all incidents are
detected and there are two incidents. The middle panel represents a second network (network B)
with poor incident detection where only two incidents are detected. Without further information, it
would appear that the risk of compromise is the same in networks A and B. The truth for network
B is shown in the far right panel where it can be seen that with perfect incident detection, 12
incidents are detected. The risk as measured by the number of hosts compromised is thus six
times as great in network B as in A, but using incident counts incorrectly indicates that the risk is
identical. Another problem with using incident counts is that the result is not diagnostic because
the number of attempted but failed attacks is usually unknown. One network could experience
few successful attacks because there are few attempted attacks but poor defenses while another
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Figure 3. The total duration hosts are vulnerable or the total window of vulnerability is not an accurate risk
metric.

network may experience few successful attacks because there are many more attempted attacks but
strong defenses. Overall, the number of incidents is di�cult to interpret as risk because it is usually
impossible to normalize for both threat intensity and incident detection rate.

Figure 3 illustrates a �nal problem with using simple counts as a risk metric. Here we are
interested in windows of vulnerability or the time intervals when hosts have vulnerabilities and
can be successfully compromised by the appropriate threat. We assume the metric used is the
total of all windows of vulnerability across all hosts measured in vulnerability months. Windows
of vulnerability are accumulated across all hosts over a year to create this metric. The diagram on
the left of Figure 3 shows a network where only one host is vulnerable, but it is vulnerable all year.
The total window of vulnerability is 12 host months for this network. The diagram on the right of
Figure 3 shows a network where all 12 hosts in the network are vulnerable but only for the same
month. The total window of vulnerability for this network is also 12 host months. The risk from a
speci�c threat for these two networks depends on the threat. For a threat that attempts to exploit
these known vulnerabilities once a month all year long, the expected number of hosts compromised
is 1 for the network on the left and 12 for the network on the right. For a threat that is present
during only the last month of the year, the expected number of hosts compromised is one for the
network on the left and zero for the network on the right. The actual risk depends on the temporal
details of windows of vulnerabilities and the threat. This can not be determined by a simple overall
sum of windows of vulnerabilities.

7
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3. RISK ASSESSMENT AS A SCIENTIFIC METHOD

Many of the above described approaches to risk assessment seem unscienti�c, poorly justi�ed,
and ad hoc. Our goal, however, is to develop a scienti�c method to risk assessment as discussed
in a recent paper [43]. This paper presents some metrics that suggest how the security research
�eld might become a science, but most of these metrics assess the computational complexity or
utility of a speci�c attack or defense component but not the overall risk across network devices. A
good discussion of requirements necessary for risk assessment to be considered a scienti�c method
is provided in [1]. The following requirements for scienti�c risk assessment are adapted from these
requirements:

1. The mathematical approaches used to model threats, the overall system, and defense models
are clearly stated and agree to the extent possible with known threat, system, and defense
characteristics. Assumptions, simpli�cations, limitations, and constraints are clearly de�ned
to make sure they can be reviewed for accuracy and the results can be replicated.

2. The analysis focuses on determining the risk or probability of di�erent outcomes for di�erent
threats and with di�erent defenses.

3. The analysis and results are reliable, meaning that a di�erent group of researchers making
the same assumptions would obtain similar results, and they are valid, meaning that they
estimate the true underlying risk.

Our risk metric development discussed below is designed to satisfy these requirements. A key
component of our scienti�c approach is threat modeling. Our initial approach to developing threat
models is to take advantage of recent collaboration across security organizations that led to a
document entitled �Twenty Critical Security Controls for E�ective Cyber Defense: Consensus Audit
Guidelines� [38]. This document identi�es the twenty most important current cyber threats and also
the critical security controls that protect against these threats. The four metrics we describe focus
on four important foundational critical controls in [38] and the attacks these are designed to detect.
We have re�ned and extended attack models and used them and the controls to create mathematical
models of threats and defenses that are used to predict risk. Each new metric is based on a realistic
and well-de�ned adversary model, directly measures the e�ect of controls that mitigate adversaries,
continuously estimates risk, and provides direct insight into what network changes must be made to
improve security. System, defense, and vulnerability descriptions required for metric development
are also enabled by many SCAP components and the NVD National Vulnerability Database.

9
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4. GOALS

Our goal is to develop metrics that motivate the continuous security improvement loop shown
in Figure 4. Important network characteristics such as active devices, operating system con�gura-
tions, installed applications, and vulnerabilities are measured continuously at the bottom of this
loop and are used to compute metrics at the left that estimate the risk for a speci�c attack type.
Per-device metrics are used to determine the most e�cient actions that reduce risk as shown on the
top and actions taken such as removing unauthorized devices, removing unauthorized applications,
and patching lead to more secure networks over time. This continuous process requires metrics that
can be computed rapidly, continuously, and automatically using existing security tools.

Figure 4. Metrics support a continuous security improvement loop.

Each metric in this process assesses the risk from a speci�c threat and, if the feedback process
is successful, the risk from that threat will be reduced. Figure 5 illustrates the three major types
of threats that networks should be protected against. This notional chart indicates the range of
sophistication of these threats. The simplest �ankle biter� threats are frequent and use attacks with
little sophistication that are well known. It is usually easy to detect and protect a network from
these attacks. Organized cyber criminals use more sophisticated malware with the goal of making
money illicitly. This malware must constantly change to maintain success in compromising hosts
and avoiding defensive measures. Compromised hosts may be used for many purposes including
gathering personal information, sending spam, capturing online banking information, and launching
distributed denial of service attacks. Criminal threats are carefully monitored by security companies
that can provide tools for protection and detection. Nation states and other groups with su�cient
funding can create the most sophisticated advanced persistent threats (e.g., [36]). It can be very
di�cult to detect and protect a network from these threats. As shown in Figure 5, each of the three
threats has access to both unsophisticated attacks and ever more sophisticated threats. They will
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Figure 5. A network should be protected from at least three types of threats ranging from ankle biters to
criminal malware to advanced persistent threats. Each threat will use the least sophisticated attack that can
be successful, but each type has accesses to more sophisticated techniques.

use the simplest threat necessary to penetrate the defenses in a target network without exposing
more sophisticated approaches to discovery and analysis that could lead to development of e�ective
protection.

Our goal is to develop metrics for the most important known threats including attacks from
ankle biters, organized crime, and some known advanced persistent threats. If these metrics are
driven down to low enough values using defensive controls, a network will be protected from impor-
tant known threats. This is indicated by the dashed line in Figure 5. E�ective metrics can protect
against the known threats to the left of this dotted line. They may not protect against unknown
and extremely sophisticated advanced persistent threats to the right of this dotted line. They will,
however, increase the di�culty of launching these advanced attacks, potentially make it easier to
detect them, and force the adversary to use ever more sophisticated and costly attacks.
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5. A METRIC MATURITY MODEL

The metric maturity model shown in Figure 6 is an essential foundation of our approach that
supports gradual introduction and use of security metric components across an enterprise. The
notional curve in this �gure shows how security improves over time during three maturity stages.

The �rst checklist stage provides a foundation necessary to compute metrics. During this
phase, system administrators develop an understanding of their system and the most important
threats. They begin to implement processes, add tools to gather data, and develop controls. While
this stage does not directly implement security measures, we posit that it does have a signi�cant
security impact. The slight improvement in security shown by the curve in the left of Figure 6
is presumed to be due to improvements in general network hygiene and the fact that improved
understanding informs existing security processes. The large improvement towards the end of this
phase might be caused by discovery of previously unknown network structure made possible by
improved hygiene, new security tools, and by the repair of non-functional security tools, processes,
and controls.

Figure 6. Three stages of a metric maturity model.

The second capability stage of the maturing process focuses on generating speci�cations of
security properties and improving the timeliness, coverage, and accuracy of measurements used to
compute risk in the third stage. Capability de�cit metrics implemented in this stage measure the
gap between the actual capability and a parametrized �gold standard� capability. Until values of
these metrics are close enough to the �gold standard,� risk cannot be computed accurately. Security
improves slowly during this stage due to further discovery and repair of security issues as coverage
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improves across the entire network, speci�cations are developed, rapid sampling discovers previously
missed short-duration security conditions, and security properties are measured accurately.

Operational metrics in the third maturity stage are the key component of the OODA-like
[30] improvement loop described in Figure 4. They lead to continuous security improvements by
assessing risk and indicating which devices, software packages, miscon�gurations, or other network
characteristics are responsible for the greatest increase in risk. In our current metrics, we assume
that a threat is always present and attackers continuously scan for exploitable insecure conditions
with a given sampling interval. Risk is thus the expected impact of the threat. This is normally the
expected number of hosts compromised, or if asset values for hosts are available, it can be the total
asset values of the compromised hosts. Assessing risk with operational metrics makes it possible
to act on the metrics and modify a network to reduce risk. Operational metrics lead to a large
improvement in security when followed by a response that modi�es the network security properties
in a way that reduces risk. They can only be determined after capability de�cit metrics are low
enough to guarantee that the operational metrics are computed accurately. This is why they follow
capability de�cit metrics in the metric maturity model.

After designing this security maturity model, we found that it is supported by, and in some
ways parallel to, the the four step �Visible OPS� maturity process described in [18] that is designed
to improve overall IT operations. The Visible OPS approach includes the following steps: 1)
stabilize the patient and get plugged into production, 2) �nd business risks and �x fragile artifacts,
3) implement development and release controls, and 4) continual improvement. Networks where
the Visible OPS process is followed will have good situation awareness, a good understanding of
devices and software on networks, procedures in place for upgrades and change management, an
understanding of asset values of devices and which devices and software packages are most critical,
good visibility across the IT infrastructure, and a well-trained IT workforce. Although the Visible
OPS process does not de�ne continuous security metrics, it will be much easier to implement our
metrics in a network where the Visible OPS process is followed.
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6. DESIRED METRIC CHARACTERISTICS

We have already described key characteristics of a scienti�c approach to risk assessment.
These include carefully de�ning assumptions and models, developing risk metrics that estimate the
probability of various outcomes, and making sure metrics are accurate and the analysis is correct
and consistent with the data and assumptions. In addition to these principles, we established the
following three key additional guidelines for risk metric development:

1. Each metric must be simple to understand and practical to implement.

2. Each metric must accurately estimate the risk from one speci�c important threat.

3. Metrics must motivate actions to reduce the risk from threats.

Maintaining practicality and simplicity are common goals. Practicality includes using data that can
be gathered with existing security tools and simplicity includes modeling mainly primary e�ects that
can be predicted accurately with simple models. Accurately estimating the risk from one threat at
a time allows us to focus on important threats and create additional detailed threat models and
metrics as necessary without having to model all threats at once. Motivating defenders to make
the right decisions to improve security, however, is more unusual guideline and is the focus of this
section.

As noted in [37], motivational metrics must be objective, computed fairly, and be visible to all
involved in the security process to allow comparisons over hosts, subnets, and enterprises and over
time. As in [37] we have adopted the convention that high scores are bad and low scores (near zero)
are good. If scores are normalized to range from 0 to 100 and high scores are good, it was found in
the past [27] that system administrators stopped trying to improve scores once they reached 80 or
90 because these represent good test scores in an academic setting. Alternatively they continued to
try to reduce scores to zero after reaching 10 or 20 if low scores are best.

One of the most di�cult motivating metric characteristic to achieve is that incremental im-
provement in controls must lead to incremental improvements in the metric. If this doesn't occur,
then there will be little positive incentive to add controls. When multiple controls contribute to
overall security, their settings should be combined in a way that motivates addition of controls by
giving credit to incremental improvements. This goal often needs to be traded o� against the desire
for accurate statistical defense models. An example of the application of this goal is providing credit
for creating a speci�cation that enables a security test when computing the capability de�cit metric,
even if the test is not yet implemented.

Another motivational feature is fairness. To be fair, a metric should not penalize a system
administrator for a centrally controlled router with vulnerabilities if that system administrator has
no control over that router. A metric should also not penalize a system administrator for a legacy
system if that system is essential and it has been determined that the risk posed is acceptable. It
should also be easy to determine major security �aws that create poor (high) metric scores. For
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example, devices with the worst individual scores should be easy to identify and the reason for these
high scores should be evident.

A �nal motivational feature is that the overall di�culty of obtaining a good low metric score
value should increase over time. Initially it should be relatively easy to get a good low score, but
this should become more di�cult as capabilities, controls, and responses mature. This property
is enabled by our metrics via parameters that can be adjusted over time to raise the standard of
capability and operation required for good metric scores.
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7. OVERVIEW OF FIRST FOUR METRICS

We will demonstrate how to develop risk metrics for any well-de�ned threat and system. As we
develop new risk metrics, they will be labeled using the pre�x �LR� followed by a dash and a number
such as LR-1 for the �rst metric. The LR pre�x stands for �Lincoln Risk� metric. Initially, we focus
on the most important threats selected by the authors of the �20 Critical Controls� document [38].
This document describes 15 critical controls and associated attacks that are amenable to continuous
monitoring and 5 that are not. We selected the threats from an initial 5 of these 15 (1, 2, 3, 4, and
10) to create foundational risk metrics to develop and denote our metrics as LR-1 through LR-4.
Likewise, we denote the critical controls from [38] using the pre�x CC followed by a dash and the
number of the critical control.

TABLE 1

Characteristics of Four Lincoln Risk (LR) Metrics

LR CC Entity

with

security

condition

Security

condition

exploited by

attacker

Speci�cation that

enables security

condition test

Data required by

operational metric

1 1 Subnet Unauthorized

computer systems

and laptops

Authorized devices

on each subnet

List of �rst and last

seen times of

unauthorized devices

2 2 Device Unauthorized

software

Unauthorized and

authorized software

on each device

List of �rst and last

seen times for each

unauthorized software

package on each device

3 10 Device Known software

vulnerabilities

List of known

vulnerabilities on

each device

List of �rst and last

seen times and score

for each vulnerability

on each device

4 3,4 Devices Miscon�gurations List of correct
con�gurations on

each device

List of �rst and last
seen times and score

for each
miscon�guration on

each device

The �rst two columns of Table 1 show the LR number followed by the corresponding number
of the critical control (CC) in [38] whose threat is modeled by the LR metric. It can be seen that the
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LR and CC numbers for the �rst two rows in this table correspond. For example, LR-1 models risk
from the threat for CC-1 and LR-2 models risk from the threat for CC-2. This di�ers for the next
two rows where LR-3 corresponds to CC-10 and LR-4 corresponds to CC-3 and CC-4. The fourth
column of Table 1 indicates the insecure condition that is exploited by the threat being modeled.
For example, LR-1 estimates the risk from an attacker who compromises unauthorized devices on a
network such as test servers, personal laptops, or smart phones. It corresponds to the �rst critical
control that is entitled �Inventory of Authorized and Unauthorized Devices.� Implementing the
�rst two metrics (LR-1 and LR-2) provides general network situation awareness required for other
metrics. LR-1 monitors unauthorized devices and its implementation provides a list of all devices on
a network. LR-2 monitors all software packages and its speci�cation provides a list of all software
packages used in a network. The third and fourth metrics (LR-3 and LR-4) were selected because
counts of vulnerabilities and miscon�gurations are common, well supported by SCAP, and are often
currently available at secure networks. These two metrics also illustrate how to combine multiple
miscon�gurations and vulnerabilities on one device and how to fuse data gathered from network
scanners and host-based agents.

Table 1 describes further details of the �rst four metrics. All metrics are associated with
exploitable insecure conditions that can occur at any time. If an attacker detects an insecure
condition �rst after it occurs, a network device such as a host or laptop may be compromised. If
a defender detects an insecure condition �rst, and removes it fast enough, the device is protected.
The fourth column in Table 1 lists the exploitable security condition corresponding to each metric
and the third column indicates the network entity that contains this condition. For LR-1, attackers
look for unauthorized devices on each subnet. For LR-2, attackers look for unauthorized software
on all devices. For LR-3, attackers look for known vulnerabilities on all software packages. Finally,
for LR-4, attackers look for software miscon�gurations. The �fth column in this table lists the
speci�cations that are required to determine if an exploitable security condition is present. A major
component of the second maturity stage of metric development is creating these speci�cations.
As can be seen, sometimes they include lists of allowable devices, authorized and unauthorized
software, known software vulnerabilities, and con�guration checks. The �nal column in Table 1
describes the data required to compute the expected number of hosts compromised for the attack
model associated with each metric. This is always a list containing each device with an exploitable
insecure condition, the window of vulnerability (start and end times) of the condition, and some
measure of the severity of the exploitable condition.
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8. ADVERSARIAL INTERACTION BETWEEN ATTACKERS AND

DEFENDERS

As noted above, all four metrics are associated with exploitable insecure conditions that can
occur at any time. If a defender detects an insecure condition �rst, and eliminates it fast enough, the
device is protected. If an attacker detects it �rst, a network device may be compromised. Successful
defense is illustrated in Figure 7. The horizontal axis in this �gure represent time starting when
the insecure condition begins. For LR-1, this corresponds to an unauthorized device being placed
on a network. The solid bar labeled �Window of Opportunity for Attack� marks the time interval
that the insecure condition could be exploited by an adversary to compromise a host. Note that
we assume the security condition is exploitable even while being processed by the defender. In this
example, the defender detects the security condition and responds fast enough to remove it before
it is detected by the adversary. If the attacker had detected the insecure condition before it was
removed, it would have enabled an attack.

Figure 7. Sequence of events when a defender detects and removes a security condition before it is discovered
by an attacker.

Figure 8 illustrates the interaction between defenders searching for and eliminating vulnerable
conditions and attackers also searching for vulnerable conditions and using them to exploit devices.
The vertical axis in this �gure represents an enumeration of all possible insecure conditions in
a network that could be exploited by one attack type. For LR-1, this would be the available IP
address space. The horizontal axis represents time with vertical lines at weekly intervals. Each thick
horizontal gray bar represents an insecure condition that begins and lasts for a speci�c duration. For
LR-1, each bar represents an unauthorized device with an IP address that was put on the network.
We normally assume defenders and attackers do not know when security conditions will begin and
how long they will last.

19



The steeply slanted lines in Figure 8 represent sequential continuous periodic defender scans
over all security conditions that are searching for insecure conditions. When a defender �nds an
insecure condition, it is processed. Processing can eliminate the insecure condition by adding
controls or removing the entity with the vulnerability from the network or it can determine that
the test used to detect the insecure condition was incorrect and the insecurity does not exist. This
processing is indicated by making the horizontal bars darker. For LR-1, this corresponds to removing
an unauthorized device from the network, adding patches and other security controls required to
authorize the device, or analyzing the device and determining that it should be authorized. This
defender processing occurs rapidly in Figure 8 as shown by terminating security conditions soon
after they are detected by the defender.

Figure 8. Attackers and defenders scan for exploitable security conditions.

The less steep horizontal dotted lines in Figure 8 represent sequential continuous attacker
scans looking to �nd and exploit insecure conditions. Two insecure conditions are detected by the
attacker and exploited in this �gure as shown by the bars that become dark after attacker detection
on the upper left and bottom right. For simplicity, we assume that a device is compromised as soon
as an exploitable security condition is detected by an attacker. As noted above, we also assume
that a device can be compromised as long as it is on the network and still assessed to be insecure,
even if it has been detected by a defender who is processing and analyzing the device.
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9. NOTATIONAL CONVENTIONS AND INTRODUCTION

In this section we introduce some notational conventions and describe important notation that
is used in the introduction and the metric descriptions. Additional notation is introduced in the
metric descriptions. The most important temporal notation that describes durations and sampling
intervals is summarized in Figure 9 and described below. Additional notation used when computing
metrics is also described below and both temporal and metric notation is summarized in Table 2.

Figure 9. Graphical summary of notation used to describe sampling intervals and durations.

As noted above, we have adopted the convention that high scores represent poor security and
low scores (near zero) represent good security. Capability de�cit metrics are designed to range from
0 to 1. Low values near 0 are good and high values near 1 are bad. These scores can be normalized to
range from 0 to 100 by multiplying by 100 for presentation to security analysts and administrators.
Operational metrics normally represent risk or the expected number of devices compromised. If
asset values are available for devices, they can represent the total assets compromised. Operational
metrics can also be normalized to range from 0 to 100, when desired by taking into account the
total number of devices or assets and other network characteristics.

Component functions used to compute operational and capability de�cit metrics are also
designed to follow the convention that high values represent poor security. For example, we derive
formulas that compute the probability of an attacker detecting an insecure condition Pdetect and
the probability that a defender misses an insecure condition Pmiss. High values for both of these
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TABLE 2

Summary of the Most Important Notation

Term Meaning

Wm Measurement window or time span over which metrics are computed.

δ or δd Interval between defender scans that test for a speci�c security condition.

∆or∆a Interval between attacker scans that test for a speci�c security condition.

wi Window of opportunity or duration that insecure condition i is present.

Wt Target window or minimum duration of an insecure condition that a
defender should always detect.

Pdetect Probability that an attacker detects an insecure condition.

Pmiss Probability that a defender misses an insecure condition.

CDMi Capability De�cit Metric for Lincoln Risk Metric number i.

SD Speci�cation De�cit component of a Capability De�cit Metric.

TD Timeliness De�cit component of a Capability De�cit Metric.

CD Coverage De�cit component of a Capability De�cit Metric.

AD Overall Accuracy De�cit used to compute a Capability De�cit Metric.

OMi Operational Metric or expected devices compromised for Lincoln Risk
metric number i.

Pcomp Probability a device is compromised given that an insecure condition is
detected on it by an attacker and the attacker launches an exploit.

S Terms that weight importance begin with S.

functions represent poor security and low values represent good security. Capability De�cit Metrics
are indicated by CDMi, where i is the LR number from Table 1. Capability de�cit metrics are
computed using measures of the Speci�cation De�cit SD, the Timeliness De�cit TD, the Coverage
De�cit CD, and the overall Accuracy De�cit AD. Operational metrics are indicated by OMi,
where i is the LR number from Table 1. In addition, terms that begin with S are used to weight
importance.

We use capital letters and symbols such as W and ∆ to represent quantities that are, at least
initially, de�ned and are free parameters. We use lower case letters and symbols such as w and δ to
represent quantities that are measured and known.

As shown in Figure 9, the symbol delta (δ, ∆) is used to indicate the interval between sampling
times for periodic sampling or the average sampling interval for non-periodic sampling. The symbol
δ or δd is used for defender sampling and ∆ or ∆a is used for attacker sampling. The letter w is
used to represent opportunity windows or durations of di�erent types of insecure conditions. For
example, wi is the window of opportunity for an attacker or the duration that insecure condition i is
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present. In addition, Wt is the target duration or or the minimum duration of an insecure condition
that a defender should always detect and Wm is the measurement interval over which metrics are
computed.

23



 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 



10. MODELING DEFENDER AND ATTACKER SCANNING

Modeling the adversarial interaction between defenders and attackers requires a mathematical
model of how attackers and defenders scan for insecure conditions. The initial insecure conditions
scanned for are shown in Table 1 and include unauthorized devices, unauthorized software, software
miscon�gurations, and software vulnerabilities. The following sections describe how to model four
approaches to scanning for insecure conditions. These are 1) instantaneous scanning where an
insecure condition is discovered immediately, 2) periodic scanning where every security condition
is examined periodically with a given sampling interval, 3) Poisson sampling where the sampling
interval has a Poisson distribution with a given mean value, and 4) Pareto sampling where the
sampling interval has a long-tailed Pareto distribution with a given mean. These span a wide range
of sampling strategies that might be used by attackers or defenders. In each section we describe
what type of adversary or defender this type of sampling might represent. We also derive two
equations. One computes the probability that an attacker detects an insecure condition with a
duration or window of vulnerability w when using an average sampling interval of ∆. The other
computes the probability that a defender misses an insecure condition of duration w when using an
average sampling interval of δ. These formulas and this analysis forms a foundation that is used to
develop both capability de�cit and operational metrics. Following the analysis of each of the four
sampling regimes, a summary contrasts and compares them.

10.1 INSTANTANEOUS SCANNING

Instantaneous scanning occurs when a security condition is detected immediately as soon as
it occurs. For example, for LR-1, a defender could detect an unauthorized device as soon as it
is attached to a network if switches implement Network Access Control (NAC) approaches (e.g.,
[41]) that allow only speci�c devices to be attached to a network. New unauthorized software could
also be detected immediately for LR-2 by a defender if software installation and maintenance was
centralized and users were not allowed to install software. On the attacker side, new devices could be
detected immediately on a local area network for LR-1 if malware installed on a local host monitors
ARP or DHCP tra�c to detect a recently-connected device being assigned an IP address. This
type of detection isn't actually scanning, but is event-driven. With instantaneous sampling, we will
normally assume that the probability of an attacker detecting an insecure condition is 1 and the
probability of a defender missing a security condition is 0 for all security condition durations.

10.2 PERIODIC SCANNING

Periodic scanning is illustrated in Figure 10. The horizontal axis in this �gure represents
time, and there is a vertical line or impulse whenever a speci�c security condition is sampled. As
can be seen, sampling occurs periodically every 10 weeks. Periodic sampling occurs when attackers
or defenders sample each potentially insecure condition periodically with a �xed sampling interval
and an initial sampling time that can be considered uniformly distributed over the measurement
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Figure 10. Periodic sampling used to detect insecure conditions.

interval compared to the onset or o�set of insecure conditions. Figure 8 illustrates attacker and
defender interactions where both use periodic scanning. For periodic sampling, the attacker sampling
interval is initially unknown, so we assume a given sampling interval ∆a that can be used to vary the
di�culty of obtaining a good low operational metric score. A small sampling interval represents a
fast aggressive attacker and a large sampling interval represents a slower more stealthy attacker. The
defender scan interval is usually obtained from cooperative defenders and is known. It is denoted
by δd and both attacker and defender scan intervals are measured in seconds. Although Figure 8
illustrates sequential scanning, we will assume devices or other security conditions are not scanned
in any particular sequential order. The only key assumption is that each device is examined every
∆a seconds by the attacker and every δd seconds by the defender.

The simple model of periodic scanning can closely model many types of defender and attacker
activity observed on the Internet. Periodic scanning is a good model for many defender scans that
are run daily or weekly to detect insecure conditions. Periodic scanning is also a good model for
many worms that �nd new victims by randomly or sequentially scanning IP addresses. These have
been been widely analyzed and modeled (e.g., [8, 42]) and are still common (e.g., [9, 21, 33]). Worms
are typically characterized by their scan rate speci�ed as IP addresses scanned per second. This rate
often varies as a function of the time and of the geographic location or IP address range. Variation
is caused by many factors including the number of compromised computers contributing to a scan,
a preference for local or remote scanning, a preference or aversion for certain languages or countries,
and the time of day as it a�ects the number of computers that are on at any time. Periodic scanning
where the scan interval varies with time and with the IP address range of the scanned network is
generally a good model for worm-like scanning. It can model slow and stealthy scans with long
scan intervals and rapid scans with short intervals. Periodic scanning is also a good model for scans
performed by inside attacks that are launched from a computer inside a network boundary. Such
scans often explore the whole IP address space of a local network, and they may be rapid or slow
and stealthy to avoid discovery.
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Even though attackers do not launch client-side attacks directly against target computers,
client-side attacks can also be modeled as an attacker performing periodic scanning of victim hosts.
In a client-side attack, an attacker either inserts malware on legitimate web servers or directs a user
using email, social media, or other approaches to browse to a malicious web site with embedded
malware. Alternatively, an attacker can trick a user into downloading malicious content that will
run an exploit when the application required to open the content runs. In either case, when a
user clicks on the infected web page or opens the infected �le, malicious content is executed that
exploits vulnerabilities in the browser or in helper applications used to display images, play movies,
edit documents, or perform other functions. In the common case of malware on a web site, the
attacker sampling interval is the average interval between visits of malicious web sites for a user.
Compromising hosts using malware on web sites can be extremely e�ective because there are so
many helper applications and so many vulnerabilities in these applications and browsers. As an
example of the extent of this problem, the Google Safe Browsing Initiative detected more than
1.6 billion unique web pages with malicious content from Dec 2006 to April 2011 [35]. A recent
study of a residential network with 20,000 hosts also found that after two weeks roughly 20% of
these hosts had connected to one or more web sites found to contain malware by the Google Safe
Browsing Initiative [21] and roughly 3% of these hosts became infected with malware. Although
browsing patterns for individual users are complex (e.g., [19]), periodic scanning where the scan
interval varies with time and IP address is a simple approach to model client-side attack attempts
on hosts. Periodic sampling is also a reasonable model of spear-phishing attacks where a user is
sent a carefully crafted email designed to entice them to open an attachment or visit a malicious
web site. Here the attacker sample interval is the interval between receiving spear-phishing emails.

Actual attacker sampling intervals are di�cult to determine because most attackers attempt
to be stealthy and avoid detection. Our strategy is to initially set the attacker sampling interval ∆a

to be large (e.g., slow sampling) to make it easier to obtain good low metric scores for motivational
purposes. As time progresses and the network becomes more secure, the attack sampling interval
should be lowered to values that are near actual values. Although actual values will never be
known exactly because all attacks will never be detected, they can be estimated. For client-side
attacks they can be estimated by examining the rate at which hosts visit black-listed web sites or
download known malicious content. For server-side attacks, they can be estimated by examining
tra�c directed at monitored servers. Malicious intent might be determined from the source IP
address or content. Rates also might be estimated from data collected by client honey nets (e.g.,
[35]) or by from analysis of recent worms (e.g., [33, 42]).

Periodic scanning with a time varying sample interval can also be used to model defender
scans. Here, the actual sampling interval is known exactly. If defenders detect security conditions
instantaneously, this can be modeled as periodic sampling with a sampling interval of zero. If there
is a delay between the beginning of the insecure condition and detection, this can also be modeled
as periodic sampling, but with a sampling interval equal to the delay. If scans occur weekly or
monthly, as sometimes occurs for software vulnerability scans, the sampling interval is set to the
time between examining each device which would be a week or month for this example. In addition
to the sampling interval, defenders are characterized by the time it takes to process and eliminate
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Figure 11. Probability of detecting a security condition of duration w by periodic scanning with a sampling
interval of ∆.

a security condition from a network. Since devices can be compromised during processing, small
processing times are desired.

Two important attacker and defender characteristics required to estimate risk and capability
are the probability that an attacker detects an insecure condition for operational metrics and the
probability that a defender misses a security condition for capability de�cit metrics. If we specify
the duration of a security condition by w and assume periodic sampling with a sampling interval
of δ for a speci�c security condition, then the probability that the condition is detected is given
by Pdetect = min(1, w/δ). This can be seen by considering an insecure condition with a duration
that is much smaller than the sampling interval. As noted above, we assume that the starting time
of an insecure condition is random and uniformly distributed relative to sampling times. Consider
the illustration in Figure 10 and the regions in this �gure where an insecure condition could start
and be detected. When w is small, these regions will be of length w and occur immediately before
each sampling time. The probability of detection will thus be the region length divided by the
sampling interval. As w increases, the fraction of the space between samples �lled by the region
where the insecure condition is detection will increase until w reaches δ. When this occurs, the
insecure condition is always detected because the condition is always sampled at least once. The
detection function is shown in Figure 11. It is drawn as a function of w/δ because w normally varies
across di�erent insecure conditions and normalizing by δ makes it possible to use this one curve for
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Figure 12. Probability of missing a condition of duration w by scanning with a sampling interval of δ.

all prede�ned attacker sampling intervals. As described, the curve increases from zero for very short
duration conditions to 1.0 when the duration of the condition is equal to the sampling interval and
then stays at 1.0 as the condition duration increases. To be more speci�c, the probability that an
attacker detects a condition i, present for duration wi is

Pdetect(i) = min(1, wi/∆a). (1)

To characterize defenders using periodic scanning, we �rst specify the shortest duration inse-
cure condition that the defender must detect accurately and denote this minimum target duration
as Wt. This normally should be shorter than the attacker sampling interval and than most nor-
mally occurring insecure conditions. We need to compute the probability that a defender using a
scan interval δ misses the shortest duration security condition of interest. The probability that a
defender misses a security condition with a target duration wi when using a sampling interval of δd
is 1 minus the detection formula in Eq. 1 but with defender notation, or

Pmiss = 1−min(1,Wt/δd) = max(0, 1−Wt/δd). (2)

This function is plotted in Figure 12. It is drawn as a function of δ/w because because the de-
fender varies the sampling interval δ to obtain good detection while the target duration w is �xed.
Normalizing by w makes it possible to use this one curve for all prede�ned target durations. This
function is zero when the defender sampling interval is less than the target duration because the
defender is then guaranteed to detect the condition. It then gradually rises to 1 as the sampling
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Figure 13. Poisson sampling used to detect insecure conditions.

interval increases. The increase is not linear because the horizontal x axis in Figure 12 is δ/w but
the miss probability is a function of the inverse of this ratio.

10.3 POISSON SCANNING

A Poisson process (e.g., [7]) has often been used to model users arriving to perform tasks of
di�erent durations. In our use of a Poisson process, users would be attackers or defenders arriving to
detect insecure conditions, or users browsing web sites and being compromised by client-side attacks.
This model assumes security conditions are sampled continuously and the intervals between samples
are independent of one another. Speci�cally, the interval between samples δ is assumed to have an

exponential distribution with scale parameter λ, p(δ) = 1
λ exp−

δ
λ . This model has historically been

applied to telephone call arrivals at a switchboard. A Poisson process also accurately models some
aspects of Internet tra�c. For example, user-initiated remote-login and �le-transfer sessions are well
modeled as Poisson processes with hourly rates that vary with time [32]. Start times of user-initiated
�navigation bursts� or tightly-spaced sequences of web pages downloaded by the same web client
also are also well modeled using a homogeneous Poisson process where the time interval between
bursts is caused by users reading web content before exploring other web pages [31].

Poisson sampling is illustrated in Figure 13. Once again, the horizontal axis represents time,
and there is a vertical line or impulse whenever a security condition is sampled. As can be seen,
there is more variability in the interarrival times than with periodic sampling. In this example,
the scale parameter λ, which is the mean inter arrival time, is 10 weeks. Although the average
interarrival time is 10, intervals vary according to the exponential distribution above. Variability is
not too extreme and, for an exponential distribution with scale parameter λ, the standard deviation
of intervals is

√
λ and 95% of intervals will be between zero and roughly 3λ.

In a Poisson process, the probability of missing an insecure condition of length w is the
probability that no sample occurs in interval w. Because intervals are independent and exponential,
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Figure 14. Probability of detecting a condition of duration w by Poisson scanning with an average sampling
interval of λ.

this can be expressed as
Pmiss = exp−w/λ . (3)

The probability of detection is one minus this or

Pdetect = 1− exp−w/λ . (4)

This detection curve is plotted in Figure 14. As in Figure 11, this curve increases from zero when the
insecure condition duration is small relative to the average sampling interval to 1 when the insecure
condition duration is large relative to the average sampling interval. Instead of rising linearly to
1 when the insecure condition is equal in duration to the sampling interval, the rise is gradual
and exponential with Poisson sampling. The Poisson detection plot is thus a smoothed version of
the detection plot obtained with periodic sampling. Accurate detection is only achieved when the
insecure condition duration is 3 to 5 times the average sampling interval instead of equal to the
sampling interval as with periodic sampling.

10.4 PARETO SAMPLING

Measurements of web tra�c have demonstrated that interarrival times for web browsing from
individual browser clients exhibit self-similar bursty behavior that is not well modeled by a periodic
or Poisson process (e.g., [2, 32]). Users browsing web sites and being exposed to client-side attacks
may thus be more accurately modeled using a heavy-tailed distribution. As in [2], we model the inter
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Figure 15. Pareto sampling used to detect insecure conditions.

arrival time between a single client visiting a web page, downloading all the content on that page, and
then visiting again as heavy-tailed Pareto distribution. This distribution has two parameters. The
minimum interarrival time is denoted as xm and the Pareto index is denoted as a. The distribution
of interarrival times δ is non-zero only for δ ≥ xm and is given by p(δ) = a xam

δa+1 . As the interarrival
time increases, this function falls o� more slowly than a Gaussian or Poisson distribution. The
mean of this distribution, m, is only de�ned if a > 1 and is speci�ed by m = axm

a−1 .

Pareto sampling is illustrated in Figure 15. As can be seen, there is much more variability in
interarrival times than with Poisson or periodic sampling. In this example, the average interarrival
time is 10 weeks, a is 1.5 as in [2], and the minimum duration is roughly 3.33 weeks. These
interarrival times exhibit a bursty behavior where there are short bursts containing samples with
relatively smaller interarrival times followed by much longer gaps. This type of bursty behavior
can be observed if similar sample time plots are created over longer time scales and is often called
self-similar behavior. The result is that the probability of long interarrival times falls o� slowly only
as an inverse power of the interarrival time. In a long measurement interval, there almost always
will be a few longer duration interarrival times.

We developed a closed-form solution to the probability that Pareto sampling detects a insecure
condition present for duration w. This combines an equation when security condition durations are
less than the minimum interarrival time with another equation when security conditions are greater
than this time. It also assumes that a > 1, so the mean of the Pareto distribution is de�ned.
First consider N sample times as in Figure 15 over a �nite, but long measurement interval. When
w is less than xm, start times for a security condition that will be detected will extend from a
duration w before each sample time to the sample time. Because the minimum interval between
two samples is xm, each security condition with duration less than xm will only be detected by
one sample, and the same analysis used with periodic sampling can be applied. The total average
duration for N samples is (N − 1) ·m, where m is the mean interval. The total duration of time
where a short security condition can start and be detected is (N − 1) · w. The probability of
detecting a short security condition that begins uniformly randomly over the measurement interval
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is thus Pdetect = (N−1)·w
(N−1)·m = w

m . This is the same linear equation used to calculate the probability of
detection for periodic sampling except the �xed interarrival interval for periodic sampling is replaced
by the mean interarrival time and the equation is valid only when w ≤ xm.

When the security condition duration is larger than xm, it can interact with more than one
sample. Instead of computing the probability of detection, we can compute the probability that the
large interval is missed by Pareto sampling. To be missed, the interarrival time between two samples
must be greater than w. Again, considering N samples, we �rst determine the expected number
of samples with interarrival times greater than w denoted as Nl. This will be the probability
that the interarrival time δ is greater than w times N − 1. For the Pareto distribution, this is
Nl = (N − 1) · P (δ > w) = (N − 1) · (xmw )a. The total duration where a security condition
of length w can start and not be detected will be Nl times the average duration of intervals of
length greater than w minus w because a security condition will be detected in the region of length
w immediately before each sample. The average length of security conditions of length greater
than w is ml = aw

a−1 due to the self-similarity property of the Pareto distribution. The total
average duration over the measurement interval where a security condition of length w will not
be detected is thus Nl · (ml − w) = (N − 1) · (xmw )a · ( aw

a−1 − w) = (N − 1) · (xmw )a w
a−1 . The

total expected duration of the measurement interval is N − 1 times the average interarrival time or
(N−1)·m = (N−1)· axm(a−1) . The probability of missing a long security condition that begins uniformly

randomly over the measurement interval is the ratio of these durations or Pmiss =
(N−1)·(xm

w
)a w
a−1

(N−1)· axm
(a−1)

=

1
a · (

xm
w )a−1. The probability of detecting a long duration security condition is 1 minus this or

Pdetect = 1− 1
a · (

xm
w )a−1. Combining these two detection probabilities for small and large security

condition durations results in the following formula

Pdetect =

{
w
m for w < xm

1− 1
a · (

xm
w )a−1 for w ≥ xm

. (5)

The probability of missing a security condition is 1 minus this equation.

Figure 16 shows this detection probability as a function of w/m when a = 1.5 using a linear
x-axis scale as in Figure 11. As can be seen, the probability of detection increases much more slowly
than with periodic or Poisson sampling. Even when the duration of the security condition is 10
times the average sample interval, the probability of detection is still slightly below 0.9. This is
caused by the many long-duration intervals generated by Pareto sampling.

A plot that shows the detection probability for Pareto sampling over a wider range of w/m
is shown in Figure 17. In this �gure, the x-axis uses a log scale and w/m ranges from 0.1 to 1,000.
Here it can be seen that when security condition duration is 1,000 times the average sampling
duration, the probability of detection is .988. The probability of detection is above 0.9 when the
security condition duration is 15 times the average sampling interval. Pareto sampling is clearly
more problematic for an attacker or defender. For the same e�ort, measured by the number of times
tests are performed to detect an insecure condition, attackers and defenders are more likely to miss
short duration insecure conditions.

33



Figure 16. Probability of detecting a condition of duration w by Pareto scanning with an average sampling
interval of m and a = 1.5.

Figure 17. Probability of detecting a condition of duration w by Pareto scanning with an average sampling
interval of m and a = 1.5. The x-axis uses a log scale and ranges from 0.1 to 1,000.
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Figure 18. Probability of detecting a condition of duration w by four di�erent types of sampling.

10.5 COMPARISON OF FOUR TYPES OF SAMPLING

Figure 18 shows the probability of detecting an insecure condition of duration w using the four
types of sampling described above. Instantaneous sampling always has a probability of detection of
1. The detection probabilities for other types of sampling rise from zero when the insecure condition
is much shorter than the sampling interval to equal or approach 1 when the insecure condition is
much longer than the average sampling interval.

Figure 19 shows the probability of missing an insecure condition of duration w using the
four types of sampling described above. Instantaneous sampling always has a miss probability of
0. The mean sampling interval for periodic sampling only needs to be below the duration of the
security condition for a miss probability of zero. For Poisson and Pareto interarrival times, the mean
sampling interval has to be much less that the insecure condition duration for low miss probabilities.

In the remainder of this report we will make the simplifying assumption that attackers and
defenders scan periodically. Instantaneous scans will be modeled by periodic scans with a sampling
interval equal to zero or the detection delay. This is a conservative, worse-case, assumption for
attacker scans because the probability of detection curve in Figure 18 for periodic scanning is
always greater than the probability of detection for Poisson and Pareto scanning. It is a reasonable
assumption for defender scans because most defender scans are performed periodically. In situations
where scanning di�ers from periodicity, the equations in this section for the other types of scanning
should replace the simpler detection and miss probability equations derived for periodic scanning.
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Figure 19. Probability of missing a condition of duration w by four di�erent types of sampling.
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11. USING PERIODIC SAMPLING ADVERSARY MODELS TO

COMPUTE COMPROMISE PROBABILITIES

To perform a theoretical analysis that provides some insight into the adversarial process, we
can assume that insecure conditions are present for a known duration and use adversarial modeling
to predict the probability of compromise for a device with an insecure condition as defender process-
ing and sampling intervals vary and as attacker sampling intervals vary. In practice, the duration
of insecure conditions needs to be measured and the number and duration of insecure conditions
can vary substantially across devices. We will perform the analysis for a single device with one
security condition and assume the device is compromised if it is discovered by the adversary before
it is discovered by the defender or while it is being processed by the defender. To simplify the
computation, we will assume that the defender sampling interval is smaller than the attacker sam-
pling interval (δd < ∆a), that the security condition duration is greater than the attacker sampling
interval (wi > ∆a), and that all durations and times are known exactly.

Figure 20. Event tree for a long-duration insecure condition.

Under these assumptions, there are three events that can occur as shown in the event tree
of Figure 20. Starting at the top of the tree when a new security condition occurs, there are two
choices. If the attacker detects the security condition before the defender, this leads to state A
on the right. If the defender detects the security condition �rst, then the defender processes and
then eliminates the security condition as shown on the left. If the attacker still does not detect the
security condition during processing, this leads to state C and if the attacker detects the security
condition during processing, this leads to state B. A device with a security condition is compromised
in states A and B and not in state C. Figure 7 shows the sequence of events and notation for state
C when the device is not compromised. The �rst event that occurs along the time line is that
the security condition begins. After a time interval of xd, the security condition is detected by
the defender and processing begins. Processing is complete after another time interval of δp, and
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Figure 21. Joint distribution of the time it takes an attacker and defender to detect a security condition.

then the security condition no longer exists. The �nal event is the attacker who samples the device
looking for the security condition after a time interval of xa after the security condition begins.

Figure 21 shows the joint distribution of xa and xd, which is a rectangular region with a
constant height where xa extends from 0 to ∆a and xd extends from 0 to δd. In this �gure, the
horizontal axis represents the time from when the security condition begins to the �rst attacker
sampling time and the vertical axis represents the time to the �rst defender sampling time. The
rectangle is wider than it is high because the attacker sampling interval is longer than the defender
sampling interval. The distribution shown assumes that the attacker samples each device every 3
days and the defender samples each device every day. The rightmost dark diagonal line indicates
the boundary between successful and failed attacks. In regions �A� and �B,� to the left, the attacker
detects the insecure condition before the defender detects and processes it. In region �C,� the
attacker fails to detect the insecure condition. The leftmost diagonal line indicates the boundary
when the defender processing time is zero. If the attacker sampling time is much greater than the
defender sampling time and the processing time is small, region �C� will be a large fraction of the
rectangle and the probability that the attacker fails to detect the insecure condition will be high.

It is possible to integrate the area to the left of the rightmost slanted line in Figure 21 to
create a mathematical expression for the probability of compromise as a function of the processing
time, defender sampling interval, and attacker sampling interval. If the attacker sampling interval is
greater than the processing time, and both values are constant, then the probability of compromise
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Figure 22. Probability of compromise as a function of defender sampling time.

can be expressed as a function of the defender sampling interval as

Pcompromise(δd) =
1

∆aδd

{
δpδd +

min(δd,∆a − δp)2

2
+ max{0, δd − (∆a − δp)}(∆a − δp)

}
.

A plot of this function is shown in Figure 22 when the attacker sampling interval is 7 days and the
processing time is 0 days (lower curve) or 2 days (upper curve). It can be seen that the minimum
probability of compromise occurs when both the processing time and defender sampling times are
minimum. Increasing the processing time increases the probability of compromise as does increasing
the defender sampling interval.

When the processing time approaches zero, the probability of compromise is determined pri-
marily by the attacker sampling interval. It is half the ratio between the defender and attacker
sample times or Pcompromise = 0.5δd/∆a. This holds only if the attacker sampling interval is greater
than the defender sampling interval. If the ratio of the attacker sampling interval to the defender
sampling interval is 10 to 1, then the probability of compromise is .05. This increases to .25, when
the ratio of attacker to defender sampling intervals drops to 2 to 1.

When the defender sampling interval approaches zero, the probability of compromise is de-
termined primarily by the processing time. As long as the processing time is less than say 90% of
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the attacker sampling interval, the probability of compromise is roughly the processing time divided
by the attacker sampling interval or Pcompromise = δp/∆a. The probability of compromise thus
increases linearly as the processing time increases.

These limiting cases and the overall result demonstrate that both the attacker sampling in-
terval and the processing time must be small relative to the attacker sampling interval to prevent
attackers from exploiting insecure conditions.
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12. COMBINING THE EFFECT OF MANY INDIVIDUAL INSECURE

CONDITIONS

When developing security metrics, it often happens that a device, software package, or other
entity has many insecure conditions where the probability of successful compromise after discovery
using each condition alone is known and less than 1.0. For example, a device may have many
software packages, each with one or more vulnerabilities, as in LR-3, or the operating system on a
device may have many miscon�gurations as in LR-4. In this situation, we would like to compute
the overall probability of successful device compromise.

There are many attack models that we could use to compute the probability of successful
compromise. The model that we use in this report is an attacker who tries to exploit all vulnera-
bilities one at a time and stops only after success. This is simple and well de�ned, which is why
we use it. When an attacker tries to exploit all vulnerabilities, the probability of a device not
being compromised is the probability that exploits for all vulnerabilities fail. One minus this will
then be the probability of compromise. We denote the probability of a successful compromise using
vulnerability i as Psuccess(i). Assuming that this probability is independent for each vulnerability,
then the probability of all vulnerabilities failing is the product of all (1 − Psuccess(i)) terms. The
probability of successfully compromising a device is one minus this product or

Pdevice_compromise = 1−
∏

i∈vulns
(1− Psuccess(i)) . (6)

We refer to this common computation as a complementary product and use this formula to model
the e�ect of multiple vulnerabilities and miscon�gurations.

The complementary product has more common-sense properties than other simple approaches
to combining compromise probabilities as shown in Table 3. In this table, the probability of a
successful compromise using only the single vulnerability i is represented by Pi. The �rst column
of this table shows alternative formulas that can be used to combine compromise probabilities.
The second column describes the attacker model that motivates each formula. The remaining
columns indicate whether the formulas have four common-sense properties. Each row of this table
corresponds to a di�erent approach to combining compromise probabilities. The �rst row uses the
complementary product described above and represents an attacker who tries all exploits. The
second row uses a simple average and represents an attacker who randomly tries one exploit. The
third row uses a weighted average and represents an attacker who selects a single exploit, but the
selection probability is weighted by the probability of compromise for each vulnerability. The �nal
row uses a max() function and represents an attacker who selects the single vulnerability with the
highest probability of compromise. In the middle boxes of this table, X indicates a property holds
and× indicates it does not. The bracketed examples in the tables represent compromise probabilities
for vulnerabilities. As can be see, the complementary product 1−

∏
(1− Pi) that we use is the only

combining formula that has all common sense properties listed in this table. All other methods fail
one or more of the common-sense tests.
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TABLE 3

Failure Probability Combination Formulas

Combination

formula for

overall

probability of

failure

Derived from an

attack model

where the

attacker tries

Adding a

vulnerability

does not improve

device security

Using a single

vulnerability

results in the

compromise

probability for

that vulnerability

{P} → P

Adding a

vulnerability

worsens device

security unless

the compromise

probability is

already 1.0

Worsening a

vulnerability

does not improve

device security

1−
∏

(1− Pi) X
all exploits

X X X X

∑
Pi/N X

single exploit at

random

×
[1.0] vs. [1.0, 0.1]

X ×
[0.5] vs. [0.5, 0.5]

X

(∑
P 2
i

)
/
∑
Pi X

single exploit at

random weighted

by success

×
[1.0] vs. [1.0, 0.1]

X ×
[0.5] vs. [0.5, 0.5]

×
[1.0, 0.1] vs.

[1.0, 0.2]

max (Pi) X
single best

exploit

X X ×
[0.5] vs. [0.5, 0.5]

X
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Using a complementary product assumes that the attacker has exploits for all vulnerabilities
and isn't concerned about exposing potentially expensive-to-develop exploits that a defender may
discover and then render ine�ective by creating e�ective defenses. It also assumes the attacker isn't
concerned about being detected but is willing to try many new and old exploits that may be detected
by recently updated intrusion detection or prevention systems. Other more complex attacker models
that we plan to explore in the future include those that are more concerned about cost of exploit
development, probability of success, and detection. Some examples include 1) an attacker concerned
about detection and the cost of exploit development who tries to exploit only the single vulnerability
with the highest probability of success or the �rst few vulnerabilities with the highest probabilities
of success, 2) an attacker concerned about detection who randomly tries to exploit one or a small
number of vulnerabilities, 3) an attacker with a limited budget to develop exploits who uses only
publicly available exploits available from organizations such as Metasploit [25], and 4) an attacker
with a larger budget who illegally purchases vulnerabilities as is done ethically by the Tipping Point
Zero Day Initiative TippingPoint [45].
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13. CONSIDERING ERRORS CAUSED BY SAMPLING INSECURE

CONDITION DURATIONS

In the above analyses, we assume that the durations of insecure conditions are known exactly.
In practice, these durations are determined by sampling performed by the defender. This sampling
complicates the analysis and can introduce errors in metric computations. This section analyzes
the errors caused by sampling. First, we demonstrate how to estimate the duration of an insecure
condition by periodic defender sampling in a way that eliminates statistical bias. Second, we analyze
the maximum error that occurs when estimating the probability that an attacker detects an insecure
condition when attackers and defenders use periodic sampling. We show that estimation error is
acceptable and less than 10% when the defender sampling interval is less than the minimum duration
of insecure conditions of interest.

First, we focus on estimating the duration of insecure conditions by periodic defender sampling.
A key component of our analysis of periodic sampling is Equation 1 which shows that the probability
that an attacker detects an insecure condition present for duration w using periodic sampling with
a sampling interval ∆ is

Pdetect = min (1, w/∆) . (7)

In practice, the insecure condition duration w is unknown and the attacker sampling interval is
assumed to be known. When a defender estimates the insecure condition duration using instanta-
neous sampling, then this duration is known exactly and the formula can be computed accurately.
When the defender estimates the duration using periodic sampling, errors are introduced because
the estimated insecure condition duration ŵ is di�erent than the true condition duration.

Figure 23. Estimating the duration of insecure conditions using periodic sampling.

Figure 23 illustrates the errors in measuring the start and end times of security conditions
that can be caused by sampling. The horizontal axis in this �gure represents time and the vertical
lines represent times when the defender, using periodic sampling with a sampling interval of δ, tests
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to �nd the insecure condition. Two di�erent insecure conditions are shown by the black rectangular
regions. The X's show where sampling detected the insecure conditions. The condition on the
left labeled �Insecure Condition 1� is sampled three times and the condition on the right labeled
�Insecure Condition 2� is sampled �ve times. As can be seen, the actual begin and end times of
these security conditions are not detected accurately by sampling times. In �Insecure Condition 1,�
the �rst sample is relatively close to the beginning of the insecure condition but the last sample
is relatively farther away from the end of the insecure condition. For �Security Condition 2,� the
measurement error between the nearest sample time within the insecure condition and actual start
and end times is greater for the start than for the end of the insecure condition. This measurement
error ranges from 0 to δ and has an average of 0.5 · δ assuming the start and end times of insecure
conditions are uniformly distributed over a measurement interval. The �rst sample time when a
condition is detected is on the average .5 · δ after the true insecure condition start time and the
last sample time when a condition is detected is on the average .5 · δ before the true end time. An
unbiased estimate of the duration of an insecure condition is thus the number of defender samples
that detect the condition times the sample interval or

ŵ = NSdetect · δ, (8)

whereNSdetect is the number of defender samples that detected the insecure condition. This estimate
is shown by the intervals labeled w1and w2 in Figure 23. Although the start and end times of the
estimated regions are di�erent from the true start and end times of the insecure conditions, the
duration estimates that results are statistically unbiased.

In some situations, defenders sample to detect the beginning of the insecure condition but
know exactly when the insecure condition ends because they process the insecure condition and
know exactly when it is eliminated. In this case, the insecure condition duration should be estimated
using the �rst sample time adjusted to eliminate bias and the actual end time as

ŵ = (ttrue_end − [tfirst_seen − .5 · δ]), (9)

where ttrue_end is the known end time of the insecure condition and tfirst_seen is the time of the
�rst sample to detect the insecure condition.

Now we focus on determining the error in estimating the probability that an attacker detects an
insecure condition. The above formulas compensate for the average sampling bias in measuring the
duration of insecure conditions. Even with zero bias, however, an expected error can be introduced
when using the duration estimates in Eq. 8 to estimate the probability of detection of an insecure
condition by an attacker because the duration estimates are processed nonlinearly as shown in
Figure 11. It is important to determine when this error is so large that risk computed using the
attacker probability of detection is no longer meaningful. Such an error analysis will enable us to
specify how small the defender sampling interval δ needs to be relative to the security condition
duration w to enable accurate risk estimation.
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Following from above, the estimated probability of an attacker detecting and compromising a
device is

P̂detect = min

(
1,
ŵ

∆

)
, (10)

where ŵ is the estimated insecure condition determined by periodic defender sampling and calculated
using Eq. 8, and ∆ is the attacker sampling interval. If we assume insecure conditions occur with
start and end times that have a uniform distribution relative the measurement interval, then the
ratio of ŵ and δ determines the number of times the defender will sample the condition. The
defender will either sample the insecure condition

⌈
w
δ

⌉
times or

⌈
w
δ

⌉
− 1 times, where this �ceiling�

function dxe represents the smallest integer greater than or equal to x. The probabilities of sampling
the insecure condition these number of times are listed in the following table.

Probability # Times Defender Samples Insecure Condition
w
δ −

⌈
w
δ

⌉
+ 1

⌈
w
δ

⌉⌈
w
δ

⌉
− w

δ

⌈
w
δ

⌉
− 1

These probabilities and Eq. 8 lead to the expected estimated duration equations in second column of
the table below. These expected durations and Eq. 10 lead to the probability of attacker detection
equations in the third column of the table below.

Probability Expected Duration Probability of Attacker Detection
w
δ −

⌈
w
δ

⌉
+ 1

⌈
w
δ

⌉
· δ min

(
1,
⌈
w
δ

⌉
· δ∆
)⌈

w
δ

⌉
− w

δ

(⌈
w
δ

⌉
− 1
)
· δ min

(
1,
(⌈

w
δ

⌉
− 1
)
· δ∆
)

The expected value of the probability of attacker detection estimate can be computed from the
equations in the above table as

E
[
P̂detect

]
=
(w
δ
−
⌈w
δ

⌉
+ 1
)

min

(
1,
⌈w
δ

⌉ δ
∆

)
+
(⌈w

δ

⌉
− w

δ

)
min

(
1,
(⌈w

δ

⌉
− 1
) δ

∆

)
.

The error in this estimate is the di�erence between this expected value and the true probability of
detection or

Error = E
[
P̂detect

]
−min

(
1,
w

∆

)
.

This error equation is a complex function that depends on the ratio of the insecure condition
duration and the defender sampling interval, and the ratio between the defender and attacker
sampling intervals. By selecting the ratio between the defender and attacker sampling interval that
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Figure 24. Maximum expected error in estimating the probability of attacker detection.

maximizes this error for each value of the ratio between the insecure condition duration and the
defender sampling interval, we created the plot of this maximum error shown in Figure 24.

This graph indicates that risk estimation is unreliable when the defender sampling interval is
greater than the duration of the insecure conditions. This is shown by the high error values near
-1 in the region to the left of the value where w

δ = 1 on the x axis. For example, if we test yearly
for a condition that lasts one week, then w

δ = 7
365 ≈ .02 which is much less than 1. In this example,

the probability of our detecting the insecure condition is only .02. If we believe that the attacker is
able to exploit this vulnerability once every two weeks, then the actual probability of compromise
is 0.5 whereas our observation based estimate will be only .02 resulting in an error of -0.48.

This analysis demonstrates that the error in estimation attacker probability of detection is
acceptable when the defender sampling interval is less than the minimum duration insecure condition
of interest. It shows that the maximum error approaches zero towards the right of the graph when the
defender sampling interval becomes small relative to the insecure device duration and the insecure
condition is sampled many times. For the same example of a security condition that lasts 1 week,
if we test every day, our maximum risk estimate error will be only a few percent.

In addition, the maximum error, when the defender sampling interval is less than the minimum
duration insecure condition of interest, is roughly 20% and this occurs only when the probability
of attacker detection is near 1. This results in only a small underestimate of risk in the worst case
when the attacker sampling interval is equal to the duration of the insecure condition.

This analysis assumes the start and end times of a security condition are estimated using
periodic sampling. If a defender detects the start time, begins processing the security condition,
and knows the end time exactly, the maximum error reduced by a factor of 2. The maximum error
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rate when the defender sampling interval is shorter than the minimum duration insecure condition
of interest is thus less than 10% which is acceptable for most risk assessments.
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14. COMMON METRIC COMPONENTS AND OPTIONS

Every new metric requires three components corresponding to the three stages of the metric
maturity model described in Section 4. In the �rst maturity stage, checklist metrics are developed.
These specify the data, processes and capabilities required to assess risk from the associated attack
type. In the second maturity stage, Capability De�cit (CD) metrics are developed. These measure
whether speci�cations of security properties are available and whether the timeliness, coverage, and
accuracy of measurements are su�cient to compute accurate risk estimates in the third maturity
stage. Until CD metrics are low enough, risk can not be estimated accurately in the third maturity
stage.

The overall value of a CD metric is a combination of its speci�cation de�cit (SD) and accuracy
de�cit (AD). The speci�cation de�cit indicates whether all speci�cations required to compute risk
have been created. Examples are lists of authorized devices and authorized software as shown in
the fourth column of Table 1. The accuracy de�cit is computed from two components. First, the
timeliness de�cit (TD) measures both coverage or whether tests are performed over all relevant
entities in the network and whether security conditions are scanned frequently enough to reliably
detect the shortest duration security condition of interest. Second, the total testing error (TTE)
measures the fraction of errors or misclassi�cations for the security tool that performs the test
assuming the test is timely and speci�cations are accurate. The total testing error allows us to
take into account the underlying accuracy of the approach used to perform security tests. It is an
advanced feature that can be set to 0 if it can not be accurately estimated. For example, for CC-1,
if unauthorized devices are detected using a MAC address as a unique identi�er, misclassi�cations
can occur for multiple virtual machines that use the same auto-generated MAC address. If the total
testing error has been measured experimentally on a testbed with known characteristics, we use the
measured value. If it is composed of multiple measurable components, we combine the error of each
component using a complementary product. Without any information on the misclassi�cation rate
of an approach, for simplicity, we assume zero total testing error.

We provide two options and two formula to compute the CD metric. A motivational option
(CD-A) was developed to motivate system administrators to reduce the CD metric and a proba-
bilistically rigorous option (CD-B) was developed to be more accurate under common probabilistic
assumptions. In option CD-A, credit is provided for creating speci�cations even when no tests are
performed. In option CD-B no credit is provided until the overall accuracy is reduced. We will
describe both options here, but present only option CD-A when describing individual metrics.

In general, for a particular entity i (subnet, device,...), the CD metric is de�ned as a function
of the speci�cation de�cit and the accuracy de�cit. When using the motivational option CD-A we
use the formula

Option CD-A (Motivational): CDM (i) =
SD (i) + 3 ·AD (i)

4
. (11)
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TABLE 4

Two Options for Computing Capability De�cit Metrics. The Default is CD-A.

Options Formula

CD-A (Motivational) SD(i)+3·AD(i)
4

CD-B (Rigorous) 1− (1− SD (i)) · (1−AD (i))

This formula is intended to motivate improvement by providing some credit for creating a speci-
�cation before sampling has begun. A system administrator can reduce the CD metric from 1.0
to .75 simply by creating speci�cations for all security conditions. The CD metric then can only
be reduced to zero if the AD is reduced to zero. The decision to weight the SD by 1 and the AD
by 3 is reasonable because CD scores for option CD-A are similar to those for the more rigorous
option CD-B when they are low, but a system administrator sees some change after the �rst step
of creating speci�cations.

For the more rigorously accurate option CD-B we use a complementary product to combine
SD and AD which assumes that these terms represent the probability of a condition being speci�ed
and accurately detected and that these are independent. This leads to the following formula

Option CD-B (Rigorous): CDM (i) = 1− (1− SD (i)) · (1−AD (i)). (12)

The two options for computing CD metrics are summarized in Table 4.

The global CD metric is computed as a weighted average over entities such as subnets and
devices as listed in column 2 of Table 1. To compute the global CD metric, we �rst assign Sentity (i)
as the importance of given entity i and TEntities as the total importance across entities

TEntities =
∑

i∈Entities
Sentity (i) .

The global CD metric is then the importance-weighted average of the per-entity Capability De�cit
Metric values

CDM =
1

TEntities

∑
i∈Entities

Sentity (i) · CDMentity (i) . (13)

If all entities are weighted equally, this reduces to

CDM =
1

N

∑
i∈Entities

CDMentity (i) , (14)

where N is the number of entities. As noted above, CD metrics vary from 0, the best possible score,
to 1, the worst.
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TABLE 5

Three Options for Computing Operational Metrics. The Default is OM-A.

Option Equation

OM-A: Basic
∑

i∈devices Pdetect (i) ,

OM-B: Asset Values 1
TAV

∑
i∈devicesAV (i) · Pdetect (i) ,

OM-C: Exploit Success Probability
∑

i∈devices PExploitSuccess(i) · Pdetect (i)

Operational metrics measure the risk posed by the critical control's attack type based on
insecure condition durations measured by the defender. Until capability is reasonably mature and
the CD metric is small, the operational metric has no meaning. There are again a few options when
computing the operational metric. The simplest computation (OM-A) occurs when we assume that
all devices have equal asset values and any exploit launched against an insecure condition detected
by an attacker is always successful. The operational metric is then give by

Option OM-A (Basic): OM =
∑

i∈devices
Pdetect (i) , (15)

where the sum is over all devices with insecure conditions that can be detected by the attacker
and Pdetect is the probability of an attacker detecting the insecure condition(s) on the device. (The
term Pdetect(i) has a more complex meaning when there are multiple vulnerabilities on a device and
when some of these can not be exploited with probability 1). This equation represents the expected
number of devices that are compromised by an attacker. For simplicity, this is the equation that
we will use when presenting equations for individual metrics.

If devices have di�erent asset values we represent the asset values for device i as AV (i) and
modify this equation to create option OM-B where

Option OM-B (Asset Values): OM =
1

TAV

∑
i∈devices

AV (i) · Pdetect (i) , (16)

where the normalizing constant TAV is given by

TAV =
∑

i∈devices
AV (i) .

Finally, if we assume that the probability that an exploit launched by an attacker against
a device with a detected insecure condition is not always successful at compromising the device,
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we can specify a probability of compromise or exploit success for device i as PExploitSuccess(i) and
extend Eq. 15 to produce a third option OM-C where,

Option OM-C (Exploit Success Probability): OM =
∑

i∈devices
PExploitSuccess(i) · Pdetect (i) .

(17)
This equation computes the probability that a device is successfully compromised as the probability
of detecting the insecure condition(s) on the device times the probability that an exploit launched
against the device is successful. The term PExploitSuccess(i) can depend on the details of the insecure
condition(s) on the device, on the di�culty of exploiting these conditions, and on the attackers skill
and competence. Options OM-B and OM-C can also be combined. The three operational metric
options are summarized in Table 5.

54



15. LR-1 METRICS FOR ATTACKERS EXPLOITING UNAUTHORIZED

DEVICES

Table 6 summarizes the characteristics of LR-1 as extracted from Table 1. Capability de�cit
metrics are computed for each subnet and attackers look for and exploit unauthorized devices such
as servers, laptops, smart phones, and personal laptops. A defender must create speci�cations
consisting of an inventory of authorized devices for each subnet and must process and remove
unauthorized devices when they are discovered. Finally, the data required to compute risk using
the operational metric is a list of the �rst and last seen times of unauthorized devices for each
subnet.

TABLE 6

Characteristics of LR-1 Metrics

Entity with

security

condition

Security

condition

exploited by

attacker

Speci�cation that

enables security

condition test

Data required by

operational metric

Subnet Unauthorized

computer systems

and laptops

Authorized devices on

each subnet

List of �rst and last seen

times of unauthorized

devices

The attack model for LR-1 is the threat that Critical Control 1 in [38] is designed to mitigate.
It is an attacker who scans a network either internally or externally looking for unauthorized software
and is assumed to opportunistically compromise any unauthorized device discovered. This threat is
illustrated in Figure 25 where it can be seen that unauthorized devices include recently installed test
servers, uncon�gured switches, laptops that have been o� the network for a long time and plugged
in without being updated and patched, personal laptops that may be insecure, virtual machines
(VMs), and personal devices such as smart phones or music players plugged into desktop computes.
A common situation noted in [38] is for an uncon�gured and insecure server to be attached to a
network in the afternoon and left on the network overnight before being con�gured and patched in
the morning. Such servers are often compromised overnight by attackers scanning networks looking
for insecure servers. Note that that LR-1 does does not consider devices that are deliberately
installed for malicious purposes but rather devices that are benignly placed and then maliciously
exploited.

All components of the process shown in Figure 26 need to be in place to compute LR-1 metrics.
This process begins with creating an inventory of authorized devices shown on the upper left for
each subnet. All subnets in the network are continuously scanned by the network defender for new
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Figure 25. LR-1 attack model.
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Figure 26. Processing required to create LR-1 metrics.

devices as shown on the bottom left. New devices that are discovered are compared to the list of
authorized devices. Discovered devices that occur in the authorized inventory are allowed. They do
not require any processing and do not a�ect metrics. Discovered unauthorized devices not in the
authorized inventory are counted in the operational metric and passed to a remediation process that
either authorizes the device or removes it. They are considered vulnerable to attack until removed
from the network or authorized. The processing required for LR-1 maintains an up-to-date device
inventory across all subnets that provides situation awareness of all authorized devices. This list of
authorized devices is used by other metrics.

The foundation for LR-1 metrics is an inventory of authorized and unauthorized devices.
Figure 27 shows an example of such an inventory. Key aspects of this inventory are that it includes
a unique identi�er for each device (combination of name, IP address, MAC address and subnet),
its owner and role, its location, the date and time last seen by a scan, and status. In addition,
there should be a scan history indicating when it was seen in the past and other information such
as the type of device (e.g., is it a virtual machine, workstation, . . . ). For unauthorized devices the
inventory should indicate when the device was �rst seen, when processing began, and the time when
processing was complete and the device was either removed from the network or authorized. If the
exact end of processing time is not available, the inventory should include the last scan time when
the unauthorized device was detected. These times are required to compute the LR-1 operational
metric. Detailed instructions on creating an inventory that could support LR-1 are available in [29].

15.1 LR-1 CHECKLIST

Assessment of the LR-1 capability de�cit and operational metrics requires the following check-
list items:

• Entities: All subnets within the enterprise must be identi�ed and enumerated.
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Figure 27. Example inventory of authorized and unauthorized devices for LR-1.

• Speci�cation: An inventory of all authorized devices permitted on each subnet must be
created and maintained.

• Monitoring: Each subnet must be continuously scanned to �nd recently installed devices,
to compare them to the inventory of authorized devices, and thus to detect and keep an
inventory of unauthorized devices. Our analyses support many types of scanning including
periodic scanning as well as instantaneous sampling as described in Section 10.

• Resolution process: A process must be in place to remove, isolate, or authorize any unautho-
rized devices detected and to maintain the the �rst detection times and end of the processing
times for all authorized devices in the inventory of unauthorized devices.

• Maintenance process: A process must be in place to add new authorized devices to the
inventory and to de-authorize devices as they are removed from the inventory.

In these checklist metric components we assume that the same technique (e.g., scanning or automatic
detection of new MAC addresses) is used to detect all unauthorized devices on each subnet. Di�erent
subnets may be scanned at di�erent rates or use di�erent device discovery procedures. To de�ne a
subnet, we �rst de�ne a reachability group as a collection of IP addresses that are treated identically
by rules in �ltering devices. For example, hosts in a DMZ and normal user desktops may be in
di�erent reachability groups. We then de�ne subnets as collections of one or more reachability
groups that use the same mechanism to discover unauthorized hosts and verify authorized hosts.
We will perform a separate mathematical analysis to compute the probability of not detecting an
unauthorized device present for a given length of time in each subnet. We will also determine
coverage based on the number of subnets where unauthorized devices are detected.
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15.2 LR-1 CAPABILITY DEFICIT METRIC

Speci�cation requirements for LR-1 as shown in Table 1 are that a per-subnet inventory of
authorized devices is required. The speci�cation de�cit is thus

SDsubnet(i) = 1− Iinventory_specified(i) ,

where Iinventory_specified(i) is an indicator function that is 1 if a device inventory is available for
subnet i and 0 otherwise.

The timeliness de�cit for LR-1 is derived from both the sampling rate and coverage infor-
mation. It is the probability that the defender misses an unauthorized device present for a minimum
target duration windowWt given a defender sampling interval δd(i) in subnet i for all subnets where
there is sampling and they are thus covered. Using Equation 2, this is given by

TDsubnet(i) = Pmiss(i) = max

(
0, 1− Icovered(i) ·

Wt

δd(i)

)
.

In this equation, the term Icovered(i) is another indicator function that is 1 if subnet i is being
scanned to discover devices and 0 otherwise. To simplify notation, for other metrics, we will express
the timeliness de�cit as

TDsubnet(i) = Pmiss(i) = max

(
0, 1− Wt

δd(i)

)
, (18)

where, by convention, a subnet that is not covered and not sampled will be assigned an in�nitely
long sampling interval (δd = ∞) with the result that Wt

δd
= 0 and Pmiss(i) = 1 as when Icovered(i)

was used and set to 0. In this way the timeliness de�cit assesses both timeliness and coverage.

The total testing error for LR-1 is an advanced feature that can be set to 0 as an assumption
of accurate testing if no additional information on the accuracy of tests used to determine the
presence of an unauthorized device is available. It can also be set based on 1) Actual tests performed
by attaching unauthorized and authorized devices, 2) An an analysis of testing assumptions and
how testing systems work, or 3) A subjective comparison between di�erent testing methods.

The accuracy de�cit is de�ned as the complementary product of the timeliness de�cit and
the total testing error:

ADsubnet (i) = 1− (1− TDsubnet (i)) · (1− TTEsubnet (i)) .

The total capability de�cit metric for each subnet can be computed using the default moti-
vational option from Eq. 11 or the rigorous option from Eq. 12. Using the default motivational
option results in

CDMsubnet(i) =
SDsubnet (i) + 3 ·ADsubnet (i)

4
.
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To compute the overall capability de�cit network we can weight the importance of each subnet as
shown in Eq. 13. If no other information is available on the importance of di�erent subnets, we
recommend the following weighting function:

Ssubnet(i) =
(# of assigned devices on i) + 40

40
.

This equation does not simply count the number of devices on a subnet, but is designed to prevent
small subnets such as DMZs that contain a few servers from being assigned negligible importance.
The constant value of 40 in the equation indicates that the value of a subnet without any devices
is equivalent to that of 40 devices or roughly 20% of the value of a fully populated class C network.
This value can be changed, if necessary. More complex subnet weightings are also possible given
knowledge of the asset value of devices and the importance of each subnet in an enterprise. Given
these or other weightings, the overall capability de�cit metric is computed as shown in Eq. 13 as

CDM1 =
1

Tsubnets

∑
i∈subnets

Ssubnet (i) · CDMsubnet (i) , (19)

where

Tsubnets =
∑

i∈subnets
Ssubnet (i) .

This total capability de�cit metric determines whether the observe step of the OODA-like loop
shown in Figure 4 is accurate enough to support accurate risk estimation and security improvements.
This metric needs to be low enough (e.g., below 0.2) before operational metrics can be computed
accurately. The target device duration (Wt in Eq. 18) can be decreased over time for motivational
purposes to make the capability de�cit easy to reduce to low values initially but then to lower the
duration of the minimum duration insecure condition that must always be detected over time to
improve security. This decrease needs to be performed consistently across all networks that use
this metric to allow fair comparisons. The target duration used also needs to be noted explicitly
whenever the metric is presented.

15.3 LR-1 OPERATIONAL METRIC

Each identi�ed unauthorized device i has a probability of being compromised based upon the
time window it is present and available for compromise wi and the attacker scanning rate ∆a. The
operational metric is the expected number of compromised devices as described in Eq. 15:

OM1 (∆a) =
∑

i∈ unauthorized
devices

Pdetect (i) , (20)
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where the probability of the attacker detecting and compromising device i is given as

Pdetect (i) = min

(
1,
wi
∆a

)
(21)

as in Equation 1. This metric is a�ected by both the number of unauthorized devices being placed
on the network and the e�ciency of their removal via the process in Figure 26.

To motivate improvement in detecting and processing unauthorized devices, the attacker sam-
pling interval ∆a in Eq. 21 can be decreased over time to make it easier to initially achieve a lower
score, but then to make the network more secure over time as part of the capability/maturity
approach. This decrease again needs to be performed consistently across all networks that use
this metric to allow fair comparisons. The attacker sampling interval used also needs to be noted
explicitly whenever the metric is presented.
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16. LR-2 METRICS FOR ATTACKERS EXPLOITING UNAUTHORIZED

SOFTWARE

Table 7 summarizes the characteristics of LR-2 as extracted from Table 1. Capability de�cit
metrics are computed for all authorized devices identi�ed by LR-1. Attackers look for and exploit
unauthorized software found on devices including desktop workstations, laptops, smart phones, and
tablets.

TABLE 7

Characteristics of LR-2 Metrics

Entity with

security

condition

Security

condition

exploited by

attacker

Speci�cation that

enables security

condition test

Data required by

operational metric

Device Unauthorized

software

Unauthorized and

authorized software on

each device

List of �rst and last seen

times for each

unauthorized software

package on each device

A defender must create speci�cations consisting of lists of authorized and unauthorized soft-
ware and process software packages using these lists when they are discovered. Lists of both au-
thorized and unauthorized software are used because new software packages, not on the authorized
list, are often discovered. If these discovered software packages are on the unauthorized list, they
can be immediately classi�ed as unauthorized instead of being put on a list of unclassi�ed software
for further analysis. The data required to compute risk using the operational metric is a list of the
�rst and last seen times of unauthorized software packages on each device.

The attack model for LR-2 is the threat that Critical Control 2 in [38] is designed to mitigate.
It expands the attacker model of LR-1 by including both server-side and client-side attacks. Server-
side attacks shown on the left of Figure 28 consist of external or internal attackers who scan a network
looking for unauthorized server software running on ports of a computer that can be reached from
the attacker's location. Server software could include web-servers, database servers, email servers,
chat servers, and other type of server software. These attacks are similar to those in LR-1 except
the attacker is looking for unauthorized servers instead of unauthorized devices. We assume that
unauthorized server software is insecure and will be compromised if discovered.

Client-side attacks shown in the right of Figure 28 have a few more stages and variations.
As described above in Section 10.2, in a client-side attack, an attacker either inserts malware on
legitimate web servers or directs a user using email, social media, or other approaches to browse to
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Figure 28. The LR-2 attack model includes server-side attacks (left) and client-side attacks (right).

a malicious web site that contains embedded malware. Alternatively an attacker can coerce a user
to download malicious content that will run an exploit when the application required to open the
content runs. In either case, when a user clicks on the infected web page or opens the infected �le,
malicious content is executed that exploits vulnerabilities in the client browser or helper applications
used to display images, play movies, edit documents, or perform other functions. This approach can
be extremely e�ective because there are so many helper applications and so many vulnerabilities
in these applications and browsers. As with server-side attacks, we will assume that unauthorized
client software will be exploited and compromised if present on a device. As noted, unauthorized
client software may include web browsers, components of web browsers, document readers, movie
and image display software, and other client software. Metric computations used for LR-2 are more
complex than in LR-1 because these two attack types have di�erent attacker sampling rates. Note
that LR-2 does does not consider software that is deliberately installed for malicious purposes but
rather software that is benignly placed and then maliciously exploited.

All components of the process shown in Figure 29 need to be in place to compute LR-2 metrics.
This process begins on the upper left with creating lists of authorized software, unauthorized soft-
ware, and exceptions. Software on all authorized devices is then continuously scanned and reported
by software agents running on devices as shown on the bottom left. These agents periodically create
a list of all software packages on devices. Observed software packages are compared to the lists of
authorized and unauthorized software. Authorized software is allowed. Unauthorized software is
counted in the operational metric and passed to a remediation process that either authorizes the
software or removes it. A device is considered vulnerable to attack until its unauthorized software
is removed or authorized. If software is not on the authorized or unauthorized list, it is logged and
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Figure 29. Processing required to create LR-2 metrics.

added to the unclassi�ed software list for further analysis. This list needs to be analyzed frequently
to keep it small. LR-2 processing maintains an up-to-date software inventory across all subnets that
provides situation awareness of all software packages. This software list is used by other metrics.

LR-2 requires a collection of software pro�les for each device that is used to build lists of
authorized and unauthorized software. It is assumed that each device has a role or collection of
roles that it serves within an organization. Performing these roles requires the software package or
packages associated with each role. These software packages should thus be authorized for a device.
For example, the upper table in Figure 30 lists the pro�les or roles for two di�erent devices. The
device named �1111xyab� serves as a Windows XP administrator and needs a Flash Player plug-in
for the Firefox browser. The device named �1122fred� supports an Apache web server running under
Gentoo Linux server software. The middle table in Figure 30 lists the software packages allowed for
the Gentoo Linux server, for the Apache web server, and for the Firefox Flash plug-in. Software
packages are named in this table using the Common Processing Enumeration (CPE) conventions
[26, 46] but other naming standards could be used such as cryptographic hash values for program
executables. The �rst four rows of content in the middle table of Figure 30 list some of the authorized
software for pro�les used by the device named �1122fred� and the last row lists some of the authorized
software for the Firefox/�ash-plug-in pro�le used by the device labeled �1111xyab.� The bottom
table in Figure 30 indicates that Java plug-in software for Firefox browsers is unauthorized and that
it enables a client-side attack.

Software packages that are not needed should be unauthorized because they can be used by
attackers to compromise a device or because they are restricted for policy reasons. Policies could
include such restrictions as not allowing peer-to-peer �le sharing or real-time video streaming. In the
remainder of this description we focus on software that is unauthorized because it allows attackers
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Figure 30. Device pro�les and inventories of authorized and unauthorized software required by LR-2.

66



Figure 31. Package classi�cation �owchart for LR-2.

to compromise a host. We assume that the inventory contains information for each unauthorized
software package that indicates whether it facilitates a client-side attack, a server-side attack, or
whether it is restricted due to policy guidelines.

The �owchart in Figure 31 provides details of how packages could be classi�ed as authorized,
unauthorized, or added to the unclassi�ed list. It allows an exception list to handle packages that
are allowed because they serve an essential function and their security risk is acceptable. Software
packages on the exception list are assumed to also be on the authorized and unauthorized list. The
�owchart shows when unauthorized software is detected (middle right), when authorized software
is allowed (bottom left), and when software is added to the unclassi�ed list (bottom right). The log
of unclassi�ed device pro�les and package names shown on the bottom right is used to generate the
list of unclassi�ed packages.

Creating and maintaining the authorized and unauthorized software package lists and keeping
the size of the unclassi�ed list small can be supported by the process shown in Figure 32. The process
begins by collecting reports from all device agents to obtain a comprehensive list of all software
packages. Those packages that are vulnerable as noted in the National Vulnerability Database
should be (explicitly) unauthorized. Other packages discovered by system observation need to be
manually analyzed and compared to security and other policies to determine whether they belong
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Figure 32. Process to create and maintain lists of authorized and unauthorized software.

on the authorized or unauthorized lists. The automated creation of the list of unclassi�ed packages
shown in Figure 29 feeds the manual process of creating the authorized list essentially by answering
the question �does this package need to be installed on a device of a particular pro�le?�. The
automatic creation of an inconsistent list feeds the manual process of creating an exception list by
answering the questions such as �Why should this unauthorized package be permitted? Who is
responsible? How long is it necessary?�

16.1 LR-2 CHECKLIST

Assessment of CC-2 capability de�cit and operational metrics requires the following checklist
items:

• Entities: LR-1 should be implemented to provide an enumeration of authorized devices and
an enumeration of all software packages on each device should be created using local software
agents and CPE nomenclature. If LR-1 is not fully implemented, LR-2 may be used for those
devices that have been speci�ed as authorized by LR-1.

• Speci�cation: A software pro�le should be created for each authorized system that lists the
software authorized and often unauthorized for that system. Each known device/software
package needs to be designated as authorized, unauthorized, or unclassi�ed. Additionally,
the attack type enabled by the unauthorized software should be speci�ed as client-side or
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server-side. Di�erent treatment of the two attack types is required because they normally
have di�erent attacker sampling intervals.

• Monitoring: Each device is monitored by a local agent to generate a list of installed software
packages. This is compared to the list of authorized, unauthorized, or unclassi�ed software
packages.

• Resolution process: A process exists to resolve discrepancies between observed and autho-
rized software packages and either remove or authorize each observed unauthorized package.

• Maintenance process: A process exists to classify software as authorized or unauthorized
as it is discovered and a process exists to ensure that currently authorized software should
remain authorized (e.g., by analyzing software packages using information in the National
Vulnerability Database). A list of exceptions should also be maintained for software packages
and devices.

16.2 LR-2 CAPABILITY DEFICIT METRIC

Speci�cation requirements for LR-2 are that a pro�le of authorized and unauthorized software
packages must exist for each device. The speci�cation de�cit is thus

SDdevice(i) = 1− Iprofiled(i) ,

where Iprofiled(i) is an indicator function that is 1 if software pro�les exist for device i and 0
otherwise.

The timeliness de�cit expresses the probability of missing a package present for minimum
target duration window Wt given a scan rate of δd(i) as

TDdevice(i) = Pmiss(i) = max

(
0, 1− Wt

δd (i)

)
. (22)

The total testing error should ideally use a complementary product of two terms. The �rst
term is the probability that when a software package is on the authorized or unauthorized list and
it is classi�ed by a software agent, the agent makes a mistake in the classi�cation. We will assume
this is 0. It can also be measured as discussed above. The second term is the probability that a
software package on a device is unclassi�ed Punclassified(i) as measured by the fraction of unclassi�ed
software packages on a device. This term is motivated by considering the resultant accuracy of
software package classi�cation when all the unclassi�ed software packages are unauthorized. This
would incur an error similar to that caused when the agent accuracy for the �rst term is equal to
Punclassified(i). We will thus assume that the total testing error is given by

TTEdevice(i) = Punclassified(i) = Fraction of Unclassi�ed Software on Device i.
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The accuracy de�cit is de�ned as the complementary product of the timeliness de�cit and the
total testing error:

ADdevice (i) = 1− (1− TDdevice (i)) · (1− TTEdevice (i)) .

Computing the the capability de�cit metric for each device using the motivational option from Eq.
11 yields

CDMdevice(i) =
SDdevice(i) + 3 ·ADdevice(i)

4
.

For the purposes of computing the overall CDM, we can weight each device with a factor Sdevice(i)
and compute the overall capability de�cit metric using Eq. 13 as

CDM2 =
1

Tdevices

∑
i∈devices

Sdevice (i) · CDMdevice (i) , (23)

where

Tdevices =
∑

i∈devices
Sdevice (i) .

As with LR-1, the overall capability de�cit metric needs to be low before operational metrics
can be computed accurately and the target device duration (Wt in Eq. 22) can be decreased over
time to increase accuracy as overall system security increases.

16.3 LR-2 OPERATIONAL METRIC

The operational metric assesses risk as the probability that a device will be compromised due
to unauthorized software either via client-side or server-side attack. Risk computation is identical to
that used in LR-1 when the windows of vulnerability or intervals when unauthorized software pack-
ages are present are non-overlapping and disjoint over time. We use some simplifying assumptions
to calculate risk when there are many unauthorized software packages on a device with overlapping
windows of vulnerability. This situation is illustrated in Figure 33. The horizontal axis of this �gure
represents the total extent of the measurement interval where risk is computed. The vertical axis
represents types of unauthorized software. The upper half of Figure 33 represents unauthorized
server software that provides services by opening network ports on a device. The only unauthorized
server software shown is one software package labeled �A� that is present for a short time interval.
As shown on the uppermost part of Figure 33 this one package simply creates an identical window

70



Figure 33. Combining vulnerability windows for unauthorized client and server software to assess risk.

of vulnerability that is used to compute risk from server-side attacks. The lower half of the �gure
represents unauthorized software that provides client-side services. Here, there are two pieces of
unauthorized software labeled �B� and �C� that have overlapping windows of vulnerability. Instead
of treating each overlapping window and software package separately, we combine them to form one
total window of vulnerability. This creates the single window of vulnerability shown on the bottom
of Figure 33 that is used to compute the risk from client-side attacks. We combine windows of
vulnerability for software packages for simplicity, because modern attackers generally exploit many
vulnerabilities, and because and it is currently di�cult to rate the exploitablity of di�erent types of
unauthorized software. Our core assumption is that the probability of host compromise with any
single unauthorized software package is 1. Providing multiple unauthorized software packages to an
attacker thus does not increase the probability of compromise, but it always remains at 1.

To compute the operational metric, we introduce some new notation. The subscripts �client�
and �server� indicate client-side and server-side attackers and the sample intervals for these two
attack types are indicated by ∆a,client and ∆a,server. The probability of an attacker detecting
windows where unauthorized software exists on client and server software are Pdetect,client (i) and
Pdetect,server (i) and the windows where attackers can detect unauthorized software are wclient(i)
and wserver(i) where overlapping windows are combined as shown in Figure 33. The resulting
operational metric is the expected number of devices that will be compromised via server-side or
client-side attacks due to the presence of unauthorized, hence vulnerable, software

OM2(∆a,client,∆a,server) =
∑

i∈ Profiled
Devices

Pdetect (i) , (24)
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where Pdetect (i) is de�ned by the complementary product

Pdetect (i) = 1− (1− Pdetect,client (i)) · (1− Pdetect,server (i)) . (25)

Using Equation 1,

Pdetect,client (i) = min

(
1,

wclient (i)

∆a,client (i)

)
,

and

Pdetect,server (i) = min

(
1,

wserver (i)

∆a,server (i)

)
.

As with LR-1, this metric is a�ected by both the number of unauthorized software packages and
the e�ciency of their removal via the process in Figure 29. To motivate improvement in detecting
and processing unauthorized software, the attacker sampling intervals (∆a,client,∆a,server) can also
be decreased over time to make it easier to initially achieve a lower score, but then to make the
network more secure over time as part of the capability/maturity approach. The client and server
attacker sampling intervals used also need to be noted explicitly whenever the metric is presented.
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17. LR-3 METRICS FOR KNOWN VULNERABILITIES

The third Lincoln Risk metric concerns known vulnerabilities. Table 8 summarizes the charac-
teristics of LR-3 as extracted from Table 1. Capability de�cit metrics are computed for an attacker
who attempts to exploit known server-side or client-side vulnerabilities on each device in an enter-
prise. The adversary in this metric corresponds to the threat for Critical Control 10, �Continuous
Vulnerability Assessment and Remediation� in [38].

TABLE 8

Characteristics of LR-3 Metrics

Entity with

security

condition

Security

condition

exploited by

attacker

Speci�cation that

enables security

condition test

Data required by

operational metric

Device Known software

vulnerabilities

List of known

vulnerabilities on each

device

List of �rst and last seen

times and score for each

vulnerability on each

device

We focus on two fundamental mechanisms to detect vulnerabilities. The �rst is maintaining
an inventory of software installed on each device, as in LR-2, and using a vulnerability database
to lookup vulnerabilities from software package names. The second is to actively scan each device
either remotely or locally using a collection of vulnerability signatures.

From the standpoint of the metrics there are two important di�erences between these mecha-
nisms. The �rst concerns the coverage of vulnerabilities. LR-2 provides a software inventory whose
coverage tends to include all o�cially installed packages even if a speci�c vulnerability signature
does not exist. By contrast, signature based scanning might detect illicitly installed packages for
which signatures exist. The second di�erence is the speed with which updated vulnerability knowl-
edge, via a database or signature set, leads to knowledge of vulnerability instance on the device
base. In the case of the database, this knowledge is essentially instantaneous. In the case of the
signature set, devices need to be rescanned. This said, direct scanning for vulnerabilities is often
also necessary as some vulnerabilities are dependent upon run-time parameters and thus must be
live tested as di�erent instances of the same package have di�erent vulnerability pro�les. The capa-
bility de�cit metric allows various forms of vulnerability detection and allows for fusion of multiple
information channels.
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17.1 LR-3 CHECKLIST

Assessment of LR-3 capability de�cit and operational metrics requires the following checklist
items:

• Entities: LR-1 and LR-2 must be implemented to provide an inventory of devices and software
packages. The LR-2 database should be extended to specify which vulnerabilities should be
tested for each authorized device of the LR-1 database and for which concern they are being
tested (client-side versus server-side).

• Monitoring: A vulnerability scanning process must exist. Ideally, it should use both remote
scanning and local agent-based data collection as well as the device software inventory of LR-2
to associate vulnerabilities to software packages using a vulnerability database.

• Resolution process: A vulnerability remediation process exists, such as patching or remov-
ing software.

• Maintenance process: A process exists to update the two data sources used for monitoring:
the vulnerability signatures and the vulnerability database.

17.2 LR-3 CAPABILITY DEFICIT METRIC

The speci�cation de�cit

SDdevice(i) = 1− Iprofiled(i)

of LR-3 requires that each authorized device has a speci�ed list of vulnerabilities for which it
should be scanned. These should be speci�ed using vulnerability assignments from the Common
Vulnerability Enumeration (CVE) dictionary [34].

For a given device with a speci�cation, we estimate the probability that each vulnerability will
be missed due to timeliness, coverage or test error. LR-3 allows for multiple detection modalities,
initially focusing on remote scanning and inventory-based discover using a vulnerability database.

For each vulnerability test and detection modality, we compute the timeliness de�cit and
testing error for that combination. We de�ne the indicator function Idetectable,modality (j) which is
1 if vulnerability j is detectable via modality modality and 0 otherwise. As a concrete example,
a client-side vulnerability in a browser is not typically detectable via remote scanning while it is
detectable via a local agent. As such, the indicator function would have value 0 for remote scanning
and value 1 for a local agent.

The timeliness de�cit for a test j on device i is then given by

TDmodality(i, j) = Pmiss,modality(i, j) = min
modality

[
0, 1− Idetectable,modality (j) · Wt

δd (i)

]
.
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In this equation, the min() function selects the modality with the lowest probability of miss. This
could be remote scanning for some vulnerabilities and inventory-based analysis for others.

The total testing error, in addressing inaccuracy and incompleteness, includes a term that
models the failure to update security signatures/vulnerability information in the scanner used to
detect vulnerabilities. For simplicity, if we assume that the measured misclassi�cation error is zero,
then the total testing error can be modeled as the probability of missing an update for each detection
modality X as as in Equation 2:

TTEX = max

(
0, 1− Idetectable,X (j) ·

Wt,update,X

δupdate,X (i)

)
.

In this equation, δupdate,X (i) is the actual time between updating signature �les for the vulner-
ability scanner and modality x while Wt,update,X is the actual update interval for the vulnerability
scanner. This term penalizes signature update intervals that are longer than the actual vendor
signature update intervals and makes sure signatures exist for all vulnerabilities. It is similar to the
total testing error term for LR-2 that penalizes sites where there are too many unclassi�ed software
packages.

Finally, di�erent vulnerabilities have di�erent severity ratings and should be weighted accord-
ingly. Ultimately, we would like to assign a weight SCVE (j) to vulnerability j as the probability
that a device will fail to satisfy is speci�ed function when it is exploited, where this includes loss of
con�dentiality, integrity, and availability. To simplify metric application, we estimate these weights
from the base metric score provided by the Common Vulnerability Scoring System (CVSS) [23].
The base CVSS score �captures the characteristics of a vulnerability that are constant with time
and across user environments� and includes components that measure where an attacker needs to
be located to exploit the vulnerability, the exploit complexity, the number of times the attacker
needs to provide authentication, and the level of compromise provided. The base score combines
scores for these components to produce a number ranging from 0 to 10.

We analyzed the distribution of CVSS scores for 2009 and 2010 and found few low values
below 4, even though vulnerabilities with these low scores should result in much lower probability
of compromise compare to vulnerabilities with scores of 10. We thus applied a simple monotonic
normalization to CVSS scores so they span a greater range and result in a value ranging from 0 to
1.0 that can be interpreted as a probability of compromise. We convert CVSS scores to probability
of compromise using the following formula

scve(j) =

(
cvss(j)

10

)2

.

This normalization results in a roughly uniform distribution of probabilities from 0 to 1.0 based
on the CVE scores from 2009 and 2010. This simple approach could be improved if more detailed
information on vulnerabilities and exploits were available.
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The accuracy de�cit is computed across tests as

ADdevice (i) =
1

TCV E (i)

∑
j∈CVE(i)

SCVE (j) · min
x∈{modalities}

[1− (1− TD3,X) · (1− TTE3,X)] ,

where TCV E (i) =
∑

j∈CVE(i) SCVE (j). Note that the SCVE terms serves to focus attention on the most
critical vulnerability and the min term selects the best means of detection.

17.3 LR-3 OPERATIONAL METRIC

The Operational Metric assesses risk as the probability that a device will be compromised
via client-side or server-side attack. To perform this computation we fuse remote and local vulnera-
bility detection data concerning a device to form a set of beliefs about the collection of vulnerabilities
on that device as illustrated in Figure 34.

Figure 34. Vulnerability detection process for LR-3.
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For each vulnerability we compute the probability that a device i will fail from a vulnerability
v as the product of it failing should that vulnerability be exploited times the probability that it will
be detected (and exploited) by the attacker

Pfail(v, i) = Pvuln (v) · Pdetect (v, i) .

We set the probability that a device i will fail due to a vulnerability as Pvunl(v, i) = SCVE (v) (based
upon the analysis of the existing CVSS corpus). The probability of detection is derived from Eq. 1

as Pdetect(v, i) = min
(

1, Wi(V )
∆detect(v)

)
.

A single device may have numerous vulnerabilities leading to a collection of probabilities of
failure {Pi}. We combine these individual probabilities of failure using a complementary product
1−

∏
(1− Pi) corresponding to the attack model where the attacker tries all exploits. This results

in a �nal operational metric

OM3 =
∑

i∈{devices}

Sdevice (i) ·

1−
∏

v∈V (i)

[1− Pfail(v, i)]

 ,

which is the expected number of compromised devices stemming from exploitation of known vul-
nerabilities.
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18. LR-4 METRICS FOR MISCONFIGURATIONS

The fourth Lincoln Risk metric concerns securely con�gured systems. It corresponds to both
Critical Control 3 (Secure Con�gurations for Hardware and Software on Laptops, Workstations,
and Servers) and Critical Control 4 (Secure Con�gurations for Network Devices such as Firewalls,
Routers, and Switches) in SANS Institute [38]. Although these two Critical Controls address di�er-
ent classes of device, the same basic threat model and hence metric applies. This metric assumes
an attacker who attempts to exploit miscon�gurations on all devices in an enterprise. Table 9
summarizes the characteristics of LR-4 as extracted from Table 1.

TABLE 9

Characteristics of LR-4 Metrics

Entity with

security

condition

Security condition

exploited by

attacker

Speci�cation that

enables security

condition test

Data required by

operational metric

Devices Miscon�gurations List of correct
con�gurations on each

device

List of �rst and last
seen times and score

for each
miscon�guration on

each device

Metrics concerning this attack type require a speci�cation of which miscon�gurations are
of concern for each device. This speci�cation should be build upon the Common Con�guration
Enumeration (CCE) speci�cation [39].

18.1 LR-4 CHECKLIST

Assessment of LR-4 capability de�cit and operational metrics requires the following checklist
items:

• Entities: LR-1 and LR-2 should be implemented to provide an inventory of devices and
software packages. The LR-2 database should be extended to specify which con�guration
checks and expected results should be speci�ed for each authorized device along with for
which concern they are being tested (client-side versus server-side).

• Monitoring: A miscon�guration scanning process must exist.

• Resolution process: A miscon�guration remediation process exists, such as changing con-
�guration options, patching, or removing software.
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• Maintenance process: A process exists to maintain appropriate con�gurations.

Note that the CCE standard does not attempt to specify best practices or policies but rather
enumerates topics that should be addressed by best practices or policies. As such, speci�cations of
expected values must be written so that in cases where a riskier option is permitted is is permitted
rather than required. For example, CCE-4006-3 is �The USB device support module should be
installed or not as appropriate� without specifying what is appropriate. If the module is permitted
for a certain class of work stations, the policy should state that the acceptable values are �installed�
or �not installed.�

18.2 LR-4 CAPABILITY DEFICIT METRIC

The speci�cation de�cit

SDdevice(i) = 1− Iprofiled(i) ,

of LR-4 requires that each authorized device has a speci�ed list of con�guration items that should
be checked along with permissible values. As with vulnerabilities, di�erent con�guration checks
vary in importance.

Unlike vulnerabilities, there is not a signi�cant corpus of existing, scored con�guration checks.
We thus nominally adopt a normalization

SCCE (j) =

(
ccss (j)

10

)2

based on the assumption that CCSS behaves somewhat like CVSS.

Unlike vulnerability testing, almost all con�guration testing is done directly on the device. As
such, LR-4 is simpler than LR-3 in that there is no need to combine di�erent information sources
for a single device.

The timeliness de�cit for a test j on device i is then given by

TD(i, j) = Pmiss(i, j) = max

(
0, 1− Wt (i, j)

δd (i, j)

)
.

The total testing error of a test j on device i LR-4 will assumed to be zero, but could be
determined empirically. This results in an accuracy de�cit of

AD (i) =
1

TCCE (i)

∑
j∈CCE(i)

sCCE (j) [1− (1− TD4 (i, j)) (1− TE4)] ,

were TCCE (i) =
∑

j∈CCE(i) SCCE (j).
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18.3 LR-4 OPERATIONAL METRIC

The operational metric for LR-4 follows the structure of LR-3. We compute a probability that
a device i will fail due to a miscon�guration j as

Pfail(j, i) = Pvuln (j) · Pdetect (j, i) ,

where Pvunl(j, i) = SCCE (j). The probability of detection is Pdetect(j, i) = min
(

1, Wi(V )
∆detect(v)

)
. As

with LR-3, a single device may have numerous miscon�gurations. These are combined using a
complementary product to produce the operational metric

OM4 =
∑

i∈{devices}

Sdevice (i) ·

1−
∏

v∈V (i)

[1− Pfail(v, i)]

 ,

which is the expected number of compromised devices stemming from miscon�gurations.
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19. LIMITATIONS

The new critical control metrics have a number of limitations. First, we focus only on technical
controls that can provide continuous and automated risk assessment. We purposefully do not try
to assess the e�ectiveness of security training or policy compliance when this has no direct e�ect on
a speci�c attack or when automated measures are impossible.

Second, we use simple attacker models. We assume attackers have exploits for all vulnerabil-
ities, that they use all exploits, and that they can be characterized by the interval between scans
that search for insecure conditions. We could adjust the interval between attacker scans based on
measured data in future work, but currently adjust the interval to motivate improvements. We
could also use more complex attacker models in the future as described in section 12, but use a
simple attacker model to maintain simplicity. Instead of computing likelihoods for di�erent threats,
we also assume attacks occur and determine which devices are directly compromised by each type
of attack. Scores for di�erent attacks can be reported separately to assess which attacks could be
most damaging or combined with weights that express the importance of each attack type. New
metrics can be easily developed and added for new threats. For example, to assess the danger posed
by a previously analyzed advanced persistent threat [6] that exploits known security weaknesses it
would be relatively easy to add a new metric.

A third limitation is that we only assess the devices that are directly compromised by a speci�c
attack type. We do not create detailed attack graphs that demonstrate how an attacker can progress
beyond this initial foothold through a network using additional vulnerabilities, trust relationships,
and other exploitable security properties as described in [16]. This type of attack graph analysis
builds on the types of measures used to compute our metrics and is planned as future work.

A fourth limitation of these metrics, that must be addressed by any security metric, is that
implementation may require new tools, procedures, and speci�cations that extend current practice.
Our experience to date, is that current SCAP standards and the National Vulnerability Database
provide a foundation for creating speci�cations. These standards often need to be extended to create
speci�cations required to compute our metrics. In addition, we have found that many existing
security tools can gather the data required to compute metrics, but the overall process used to
collect, verify, correct, and make data available in a database often needs to be improved and more
carefully designed to make sure capability de�cit metrics are low and operational metrics can be
trusted.
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20. DISCUSSION AND CONCLUSIONS

Many enterprise networks su�er from weak security postures. Enhancing these postures at
an enterprise level, in a cost e�ective manner, is extremely di�cult. We have developed metrics
that support a program of continuous risk monitoring to assess and maintain enterprise network
security. Our metrics directly measure whether defenders have discovered and removed known
exploitable security conditions and use a simple mathematical model to estimate the probability
that an attacker discovers and exploits existing security conditions.

This threat-based approach to metric development has many advantages over simpler counts
of security conditions. First, each metric focuses on a speci�c important threat. Second, operational
scores that assess risk from a threat are easy to interpret and represent the expected number of
devices that are directly compromised by that threat or the total asset value of those devices.
Third, it is easy to combine scores across a network and avoid double counting by determining the
total number of hosts compromised across all threats. Finally, the methodology developed makes it
relatively easy to add metrics for new emerging threats.

We also describe a three-stage metric maturity approach that guides implementation. It
includes (1) a checklist stage where tools, processes, databases, and other components are developed,
(2) an operational metric stage to guarantee that speci�cations required to test security properties
are available and test measurements can be trusted because they are made rapidly, accurately, and
across all relevant network structure, and (3) an operational stage to assess the risk or expected
number of devices directly compromised by a speci�c attack.

Metrics are designed to motivate enterprise-wide security improvements. Low-level risk scores
provided for devices, software packages, con�guration settings, trust relationships, and other network
properties and components make it simple to infer necessary corrective actions while high-level
subnet and enterprise scores make it possible to assess overall risk. Incremental credit to operational
and capability scores is provided when measurement processes or controls improve incrementally.
Finally, the overall di�culty of obtaining a good low metric score increases over time so that initially
it is relatively easy to get a good score, but this becomes more di�cult as capabilities, controls, and
responses mature over time.

The metrics we have developed can provide continuous risk monitoring in any enterprise
network and also support continuous risk monitoring suggested by NIST and DHS for government
networks[10, 24]. They use data that can be obtained with many existing commercial and open-
source security tools such as vulnerability scanners and make use of many existing SCAP standards
[34]. The four metrics described in this report are being implemented and tested on actual networks
in the Department of Defense and MIT Lincoln Laboratory. We have a detailed simulation for CC-1
that has been used to demonstrate and validate the computations described in this report and an
initial reference implementation. This is being extended to model the other metrics. In addition,
we are developing additional metrics to cover additional threats that critical controls in [38] are
designed to mitigate.
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